2024年 [1] Zhang Z, Liu D. A finite-discrete element model for simulating collision and fragmentation of nanoparticle agglomerates. AIChE J. 2024;70:e18275. [2] Xiong L, Liu D, Duan L, Sun Z, Chen H, Liang C. Mass-producible γ-Al2O3/CaCO3 core–shell thermochemical energy storage particles by fluidized bed spray granulation. Chemical Engineering Journal. 2024;495:153688. [3] Wu Y, Liu D, van Wachem BGM, van Ommen JR. Simulation of Nanoparticle Agglomerate Fluidization Based on Continuum Theory of Cohesive Particles. Ind Eng Chem Res. 2024;63:7453-64. [4] Liu W, Zhang Z, Liu D. Comparison of SiO2/TiO2 photocatalysts with different thicknesses synthesized by fluidized bed atomic layer deposition. Powder Technol. 2024;438:119613. [5] Liu W, Liu D, Zhang Z, Sun Z. Synthesis of core-shell nanostructured SiO2/TiO2 photocatalysts via atomic layer deposition in a fluidized bed with central tube. Particuology. 2024;91:19-28. [6] Guo J, Liu D, Ma J, Liang C, Chen X. Particle residence time distribution and axial dispersion coefficient in a pressurized circulating fluidized bed by using multiphase particle-in-cell simulation. Chin J Chem Eng. 2024;69:167-76. [7] Guo J, Liu D, Ma J, Liang C, Chen X. Particle circulation and coating in a Wurster fluidized bed under different geometries. Powder Technol. 2024;433:119223. [8] Fan Z, Liu D, Shen X, Liu N, Ma J, Chen X. Comparison of Newtonian and glycerol-water solution-based SiO2 nanofluid droplets impacting on heated spherical surfaces. Int J Heat Mass Transfer. 2024;228:125662. [9] Fan Z, Liu D, Liang C, Chen X. Comprehensive study on collision patterns of viscous droplets impacting on a heated particle. Experimental Thermal and Fluid Science. 2024;158:111259. [10] Fan Z, Liu D, Liang C, Chen X. Numerical simulation of collision dynamics between a dry particle and a liquid-coated wet particle. Powder Technol. 2024;434:119308. [11] Fan Z, Liu D, Liang C, Chen X. Numerical simulation of mid-air collisions between droplets and particles: An examination of particle forces and kinetic energy dissipation. Powder Technol. 2024;432:119124. 2023年 [1] Zhang L, Liu D, Wu X, Zhang W, Feng H. Enhancing fluidization quality of nanoparticle agglomerates by combining vibration, stirring and jet assistances. Powder Technol. 2023;430:118996. [2] Liu W, Tang H, Liu D. Combining density functional theory and CFD-PBM model to predict TiO2 nanoparticle evolution during chemical vapor deposition. Chemical Engineering Journal. 2023;454:140174. [3] Liu D, Liu W, Ma J, Liang C, Chen X. Investigation of CO2 Capture in Three-Dimensional Full-Loop Integrated Bubbling-Transport Bed Adsorber. Ind Eng Chem Res. 2023;62:17691-700. [4] Liu D, Guo J, Ma J, Liang C, Chen X. Effects of Seed Particle Properties on Coating in a Wurster Fluidized Bed. Ind Eng Chem Res. 2023;62:15687-98. [5] Li H, Liu D, Ma J, Chen X. Influence of cycle time distribution on coating uniformity of particles in a spray fluidized bed by using CFD-DEM simulations. Particuology. 2023;76:151-64. [6] Geng P, Ma J, Chen X, Liu D, Pan S, Liang C. Collision regimes and dynamic behaviors of a viscous droplet impacting on a spherical particle at high temperatures. Phys Fluids. 2023;0:null. [7] Fan Z, Liu D, Pan S, Ma J, Chen X. Spreading dynamics of the viscous droplet impacting on a spherical particle. Phys Fluids. 2023;35:023311. [8] Dong Z, Liu D, Liang C, Hao M, Dai T, Ding H. Optimization of film cooling arrays on a gas turbine vane by using an integrated approach of numerical simulation and parameterized design. Applied Thermal Engineering. 2023;219:119464. [9] Chen B, Liu D, Liu M. Combining Langevin dynamics and CFD-PBM model to predict TiO2 nanoparticle evolution during aerosol synthesis. Applied Thermal Engineering. 2023;230:120702. [10] Chen B, Liu D, Chen Z, Liu M. Langevin dynamics simulation and collision frequency modification in population balance model of nanoparticle coagulation during simultaneous agglomeration and sintering. J Aerosol Sci. 2023;174:106259. [11] Cai J, Xu J, You M, Liang C, Liu D, Ma J, et al. Flow characteristics and pattern transition of different pipe diameters in pneumatic conveying for gasifier. Chem Eng Res Des. 2023;189:282-95. [12] 刘道银, 范志恒, 马吉亮, 陈晓平. 湿颗粒倾斜碰撞恢复系数的直接数值模拟. 化工学报. 2023;74:4063-73. [13] 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟. 化工学报. 2023;74:2351-62. 2022年 [1] Xiong MJ, Liu DY, Chen XP, Ma JL, Ma LK. Characteristics of a Methane Jet Flame in Elevated Pressure and Oxy-Fuel Atmosphere Using Large Eddy Simulation with Tabulated Chemistry. Combust Sci Technol. 2022;194:700-20. [2] Wang C, Liu D, Ma J, Liang C, Chen X. Characterization of coating shells in a Wurster fluidized bed under different drying conditions and solution viscosities. Powder Technol. 2022;411:117914. [3] Shao L, Liu D, Ma J, Chen X. Experimental characterization of the effect of liquid viscosity on collisions between a multi-component droplet and a heated particle. Chem Eng Sci. 2022;261:117968. [4] Shao L, Liu D, Ma J, Chen X. Normal collision between partially wetted particles by using direct numerical simulation. Chem Eng Sci. 2022;247:117090. [5] Liu W, Liu D, Zhang Y, Li B. Numerical investigation of particle size distribution, particle transport and deposition in a modified chemical vapor deposition process. Powder Technol. 2022;407:117616. [6] Liu W, Liu D, Liu M. Effects of process parameters on preparation of Ti@SiO2 particles during fluidized bed chemical vapor deposition via design of experiments. Chem Eng Res Des. 2022;187:425-33. [7] Li H, Liu D, Ma J, Chen X. Simulation of a Wurster fluidized bed by CFD–DEM with a cohesive contact model. Chem Eng Res Des. 2022;177:157-66. [8] Feng Z, Liu D, Zhang W, Feng H, Ruud van Ommen J. Elutriation and agglomerate size distribution in a silica nanoparticle vibro-fluidized bed. Chemical Engineering Journal. 2022;434:134654. 2021年 [1] Wu Y, Liu D, Hu J, Ma J, Chen X. Comparative study of two fluid model and dense discrete phase model for simulations of gas-solid hydrodynamics in circulating fluidized beds. Particuology. 2021;55:108-17. [2] Ma JL, Liu DY, Chen XP, Liang C, van Ommen JR. X-ray tomography analysis of bubbles and slugs in a fluidized bed with inter-particle force. Int J Multiphase Flow. 2021;145. [3] Hu J, Liu D, Liang C, Ma J, Chen X, Zhang T. Solids flow characteristics and circulation rate in an internally circulating fluidized bed. Particuology. 2021;54:69-77. [4] Hu J, Liu D, Li H, Liang C, Chen X. Experimental study of the solid circulation rate in a pressurized circulating fluidized bed. Particuology. 2021;56:207-14. [5] 赵之端, 赵蒙, 刘道银, 梁财, 马吉亮, 陈晓平. 振动和搅拌对SiO2纳米颗粒聚团流化的影响对比研究. 工程热物理学报. 2021;42:136-42. [6] 刘道银, 王利民. 计算流体力学基础与应用: 东南大学出版社; 2021.
|