当前位置:首页  师资队伍

任少君

时间:2024-12-06浏览:1223

[1]      任少君*, 朱保宇, 翁琪航, . 基于物理信息神经网络的燃煤锅炉NOx排放浓度预测方法[J]. 中国电机工程学报, 2024, 44(20): 8157-8166.

[2]      任少君朱保宇翁琪航基于数据增强和模型迁移的生物质气化产物分布预测方法[J]. 中国电机工程学报, 2024, 44(18): 7309-7321.

[3]      Zhu B, Ren S*, Weng Q, Si F. A physics-informed neural network that considers monotonic relationships for predicting NOx emissions from coal-fired boilers [J]. Fuel, 2024, 364: 131026.

[4]      Ren S*, Wu S, Weng Q, Zhu B, Deng Z. Disentangled Representation Aided Physics-Informed Neural Network for Predicting Syngas Compositions of Biomass Gasification [J]. Energy & Fuels, 2024, 38(3): 2033-2045.

[5]      Weng Q, Ren S*, Zhu B, Jin Y. Reconstruction-based stacked sparse auto-encoder for nonlinear industrial process fault diagnosis [J]. Maintenance & Reliability/Eksploatacja i Niezawodność, 2024, 26(1): 1-16.

[6]      Ren S*, Wu S, Weng Q. Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships[J]. Bioresource Technology, 2023, 369: 128472.

[7]      Ren S*, Jin Y, Zhao J, et al. Nonlinear process monitoring based on generic reconstruction-based auto-associative neural network[J]. Journal of the Franklin Institute, 2023, 360(7): 5149-5170.

[8]      Fan W, Ren S*, Yu C, et al. A mixture of probabilistic predictable feature analysis for multi-mode dynamic process monitoring[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143: 104635.

[9]      Ren S*, Si F, Cao Y. Development of Input Training Neural Networks for Multiple Sensor Fault Isolation[J]. IEEE Sensors Journal, 2022, 22(15): 14997-15009.

[10]    Wang P, Ren S*, Wang Y, et al. Quality-related nonlinear process monitoring of power plant by a novel hybrid model based on variational autoencoder[J]. Control Engineering Practice, 2022, 129: 105359.

[11]    Fan W, Zhu Q*, Ren S*, et al. Multivariate temporal process monitoring with graphbased predictable feature analysis[J]. The Canadian Journal of Chemical Engineering, 2023, 101(2): 909-924.

[12]    Fan W, Zhu Q*, Ren S*, L Zhang, F Si. Robust probabilistic predictable feature analysis and its application for dynamic process monitoring[J]. Journal of Process Control, 2022, 112: 21-35.

[13]    Fan W, Zhu Q*, Ren S*, L Zhang, F Si. Dynamic probabilistic predictable feature analysis for multivariate temporal process monitoring[J]. IEEE Transactions on Control Systems Technology, 2022, 30(6): 2573-2584.

[14]    Ren S, Si F*, Zhou J, Z Qiao, Y Cheng. A new reconstruction-based auto-associative neural network for fault diagnosis in nonlinear systems[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 172: 118-128.

[15]    Ren S, Si F*, Gu H. Multiple sensor validation for natural gas combined cycle power plants based on robust input training neural networks[J]. Journal of Chemical Engineering of Japan, 2017, 50(3): 186-194.

[16]    Ren S*, Charles J, Wang X C, et al. Corrosion testing of metals in contact with calcium chloride hexahydrate used for thermal energy storage[J]. Materials and Corrosion, 2017, 68(10): 1046-1056.