[1] Yifei Zhang, Jingjing Liu, Manish Singh, Enyi Hu, Zheng Jiang, RizwanRaza, Faze Wang, Jun Wang, Fan Yang, Bin Zhu*, Superionic Conductivity in Ceria-Based Heterostructure Composites for Low-Temperature Solid Oxide Fuel Cells, Nano‑Micro Lett.(2020)12:178
[2]C. Xia, Y. Mi, B. Wang, B. Lin, G. Chen and B. Zhu*. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nature Communications, 2019, 10(1):1-9.
[3] Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi, S. Yun, M. Akbar, B. Wang, J. Kim and B. Zhu*. Proton Shuttles in CeO2/CeO2−δCore–Shell Structure. ACS Energy Letters, 2019, 4(11): 2601~2607.
[4]Gang Chen, Wenkang Sun, Yadan Luo, Yang He, Xuebai Zhang, Bin Zhu*, Wenyuan Li, Xingbo Liu, Yushi Ding, Ying Li, Shujiang Geng, and Kai Yu. Advanced Fuel Cell Based on New Nanocrystalline Structure Gd0.1Ce0.9O2 Electrolyte. ACS Applied Materials & Interfaces 2019, 20; 10642-10650.
[5] Naveed Mushtaq, Chen Xia, Wenjing Dong, Baoyuan Wang, Rizwan Raza, Amjad Ali, Muhammad Afzal, and Bin Zhu*. Tuning Energy Band Structure at Interfaces of SrFe0.75Ti0.25O3-δ -Sm0.25Ce0.75O2-δ Heterostructure for Fast Ionic Conductivity, ACS Applied Materials & Interface, 2019, ACS Applied Materials & Interfaces 11(42).
[6]K. Sivajee Ganesh, Baoyuan Wang, Jung-Sik Kim, Bin Zhu*. Ionic conducting properties and fuel cell performance improved by band structures, The Journal of Physical Chemistry C, 2019, 123, 8569-77.
[7] B. Wang, B. Zhu*, S. Yun, W. Zhang, C. Xia, M. Afzal, Y. Cai, Y. Liu, Y. Wang and H. Wang. Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells. NPG Asia Materials, 2019, 11(1):1-12.
[8]. Yuanjing Meng, Xunying Wang, Wei Zhang, Chen Xia, Ya-nan Liu, Menghui Yuan, Bin Zhu*, YuanJi. Novel high ionic conductivity electrolyte membrane based on semiconductor La0.65Sr0.3Ce0.05Cr0.5Fe0.5O3-δ for low-temperature solid oxide fuel cells. Journal of Power Sources, 2019,421, 33–40.
[9] L. Fan, B. Zhu*, P. Su and C. He. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy, 2018, 45: 148~176.
[10]. Yixiao Cai, Baoyuan Wang, Yi Wang, Chen Xia, Jinli Qiao, Peter A.van Aken, Bin Zhu*, PeterLund. Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells, Journal of Power Sources, 2018, 384 :318-327.
[11].Yan Wu, Jing Zhang, Lingyao Li, Jie Wei, Jianfeng Li, Xiang Yang, Chunjie Yan, Chenggang Zhou, and Bin Zhu*. Proton Conduction and Fuel Cell Using the CuFe-oxide Mineral Composite Based on CuFeO2Structure. ACS Applied Energy Materials, 1(2), 2018, 580–588.
[12] B. Zhu*, B. Wang, Y. Wang, R. Raza, W. Tan, J. Kim, P. A. van Aken and P. Lund . Charge separation and transport in La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy, 2017, 37: 195~202.
[13] Yanyan Liu, Liangdong Fan, Yixiao Cai, Wei Zhang, Baoyuan Wang, and Bin Zhu*. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach, Acs Applied Materials & Interfaces , 2017 , 9 (28) 23614-23623.
[14]Peter D. Lund, Bin Zhu, Yongdan Li, Sining Yun, Albert G. Nasibulin, Rizwan Raza, Markku Leskelä, Meng Ni, Yan Wu, Gang Chen, Liangdong Fan, Jung-Sik Kim, Suddhasatwa Basu, Tanja Kallio, and Ibrahim Pamuk. Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology, ACS Energy Letter. 2017, 2, 2752-2755.
[15] B. Zhu*, Y. Z. Huang, L. D. Fan, Y. Ma, B. Y. Wang, C. Xia, M. Afzal, B. W. Zhang, W. J. Dong, H. Wang and P. D. Lund. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy, 2016, 19: 156~164.
[16]Yan Wu ,Chen Xia ,Wei Zhang,Xiang Yang,Zheng Yu Bao,Jiao Jun Li,Bin Zhu*, Natural hematite for next generation solid oxide fuel cells, Advanced Functional Materials. 26 (2016) 938–942.
[17]Chen Xia, Yixiao Cai, Yue Ma, Baoyuan Wang, Wei Zhang, Mikael Karlsson, Yan Wu, and Bin Zhu*. Natural Mineral-Based Solid Oxide Fuel Cell with Heterogeneous Nanocomposite Derived from Hematite and Rare-Earth Minerals , ACS Applied Materials & Interfaces, 2016, 8 (32), 20748–20755.
[18]Baoyuan Wang, Yi Wang, Liangdong Fan, Yixiao Cai, Chen Xia, Yanyan Liu, Rizwan Raza,Peter A. van Aken,Hao WangandBin Zhu* .Preparation and characterization of Sm and Ca co-doped ceria–La0.6Sr0.4Co0.2Fe0.8O3-d semiconductor–ionic composites forelectrolyte-layer-free fuel cells, J. Mater. Chem. A, 2016, 4, 15426-15436.
[19]Wenjing Dong, AzraYaqub ,Naveed K.Janjua, Rizwan Raza, Muhammad Afzal, Bin Zhu* .All in One Multifunctional Perovskite Material for Next Generation SOFC, Electrochimica Acta, 193 (2016) 225-230.
[20] B. Zhu*, P. D. Lund, R. Raza, Y. Ma, L. Fan, M. Afzal, J. Patakangas, Y. He, Y. Zhao, W. Tan, Q. Huang, J. Zhang and H. Wang. Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials. Advanced Energy Materials, 2015, 5(8): 1-6.
[21]Liangdong Fan, Ying Ma, Xiaodi Wang, Manish Singh and Bin Zhu*. Understanding the electrochemical mechanism of the core-shell Ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell, Journal of Materials Chemistry A 2 (2014) 5399-5407.
[22] B. Zhu*, P. Lund, R. Raza, J. Patakangas, Q. A. Huang, L. D. Fan and M. Singh. A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy, 2013, 2(6): 1179~1185.
[23] B. Zhu*, R. Raza, G. Abbas, M. Singh, F. I. T. O. Skolan, KTH, Energiteknik and O. V. Kraft. An Electrolyte‐Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity. Advanced Functional Materials, 2011, 21(13): 2465~2469.
[24] B. Zhu*, R. Raza, H. Qin, Q. Liu, L. Fan, F. I. T. O. Skolan, KTH, Energiteknik and O. V. Kraft. Fuel cells based on electrolyte and non-electrolyte separators. Energy & Environmental Science, 2011, 4(8): 2986-2992.
[25]Liangdong Fan, Ying Ma, Xiaodi Wang, Manish Singh and Bin Zhu*. Understanding the electrochemical mechanism of the core-shell Ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell, Journal of Materials Chemistry A 2 (2014) 5399-5407.