[1] Z Zhou , L Li, X Liu, Z Zhou, Z Sun*, L Duan*. Accelerated syngas generation from chemical looping CH4 reforming by using reduced ilmenite ore as catalyst. Fuel Processing Technology, 2022, 232: 107270. (IF=7.033) [2] P Hong, L Li, Y Duan, Y Wang, L Duan*. Gasification decoupling during pressurized oxy-coal combustion by isotope tracer method. Energy & Fuel, 2022, 36(6): 3239-3246. (IF=3.605) [3] Z Zhou, G Deng, L Li, X Liu, Z Sun*, L Duan*. Chemical looping co-conversion of CH4 and CO2 using Fe2O3/Al2O3 pellets as both oxygen carrier and catalyst in a fluidized bed reactor. Chemical Engineering Journal, 2022, 428: 132133. (IF=13.273) [4] X Qiu, Y Wang, Z Zhou, Y Duan, L Duan*. Particulate matter formation mechanism during pressurized air-and oxy-coal combustion in a 10kWth fluidized bed. Fuel Processing Technology, 2022, 225: 107064. (IF=7.033) [5] Y Wang, X Qiu, Z Zhou, Y Duan, L Li, J Dai, H Lin, Y Luo, Z Sun, L Duan*.Ash deposition mechanism of shoe manufacturing waste combustion in a full-scale CFB boiler. Fuel Processing Technology, 2021, 221: 106948. (IF=7.033) [6] Z Zhou, X Qiu, Y Wang, Y Duan, L Li, H Lin, Y Luo, Z Sun, L Duan*. Particulate matter formation during shoe manufacturing waste combustion in a full-scale CFB boiler. Fuel Processing Technology, 2021, 221: 106914. (IF=7.033) [7] Z Bao, Y Huang, L Duan*, Y Duan. Heat transfer characteristics of horizontal tubes in the dilute phase of the pressurized fluidized bed; International Communications in Heatand Mass Transfer,2021,126: 105370. (IF= 5.683) [8] Z Yang, L Duan*, L Li, EJ Anthony. Movement and combustion characteristics of densified rice hull pellets in a fluidized bed combustor at elevated pressures. Fuel, 2021, 294: 120421. (IF=6.609) [9] L Li, L Duan*, Z Yang, Y Wang, W Xiang. Experimental study on in-situ denitration using catalyst in fluidized bed reactor. Fuel Processing Technology, 2021, 216: 106742. (IF=7.033) [10] H Jin, Z An, Q Li, Y Duan, Z Zhou, Z Sun*, L Duan*. Catalysts of ordered mesoporous alumina with a large pore size for low-temperature hydrolysis of carbonyl sulfide. Energy & Fuels, 2021, 35(10): 8895–8908. (IF = 3.605) [11] J Chen, L Duan*, F Donat, CR Müller*. Assessment of the effect of process conditions and material characteristics of alkali metal salt promoted MgO-Based sorbents on their CO2 capture performance. ACS Sustainable Chemistry & Engineering, 2021, 9(19), 6659-6672. (IF=8.198) [12] Y Huang, Z Bao, L Duan*, Y Duan. Bed-to-tube heat transfer characteristics with an immersed horizontal tube in the pressurized fluidized bed at high temperature. International Communications in Heat and Mass Transfer, 2021, 124: 105270. (IF= 5.683) [13] W Wu, L Duan*, L Li, Z Yang, D Liu, EJ Anthony. The gas interchange between bubble and emulsion phases in a pressurized fluidized bed by computational fluid dynamics simulations. Industrial & Engineering Chemistry Research, 2021, 60(10): 4142-4152. (IF=3.720) [14] Y Lu, L Duan*, Z Sun, J Chen. Flame spray pyrolysis synthesized CuO-CeO2 composite for catalytic combustion of C3H6. Proceedings of the Combustion Institute, 2021, 38(4): 6513-6520. (IF=3.757) [15] L Li, S Tong, L Duan*, C Zhao, Z Shi. Effect of CO2 and H2O on lignite char structure and reactivity in a fluidized bed reactor. Fuel Processing Technology, 2021, 211: 106564. (IF=7.033) [16] L Li, L Duan*, Z Yang, Z Sun, C Zhao. Pressurized oxy-fuel combustion of a char particle in the fluidized bed combustor. Proceedings of the Combustion Institute, 2021, 38(4): 5485-5492. (IF=3.757) [17] J Chen, F Donat, L Duan*, AM Kierzkowska, SM Kim, Y Xu, EJ Anthony, CR Müller*. Metal-oxide stabilized CaO/CuO composites for the integrated Ca/Cu looping process. Chemical Engineering Journal, 2021, 403: 126330. (IF=13.273) [18] J Chen, T Shi, L Duan*, Z Sun, EJ Anthony. Microemulsion-derived, nanostructured CaO/CuO composites with controllable particle grain size to enhance cyclic CO2 capture performance for combined Ca/Cu looping process. Chemical Engineering Journal, 2020, 393: 124716. (IF=13.273) [19] X Qiu, L Duan*, Y Duan, B Li, D Lu, C Zhao. Ash deposition during pressurized oxy-fuel combustion of Zhundong coal in a lab-scale fluidized bed. Fuel Processing Technology, 2020, 204: 106411. (IF=7.033) [20] Z Yang, L Duan*, L Li, D Liu, C Zhao. Movement and mixing behavior of a single biomass particle during combustion in a hot fluidized bed combustor. Powder Technology, 2020, 370: 88-95. (IF=5.134) [21] J Chen, L Duan*, Z Sun. Review on the development of sorbents for calcium looping. Energy & Fuels, 2020, 34(7): 7806-7836. (IF = 3.605) [22] Z Bao, L Duan*, K Wu, C Zhao. An investigation on the heat transfer model for immersed horizontal tube bundles in a pressurized fluidized bed. Applied Thermal Engineering, 2020, 170: 115035. (IF=5.295) [23] P Yang, Z Sun, L Duan*, H Tang. Mechanism of steam‐declined sulfation and steam‐enhanced carbonation by DFT calculations. Greenhouse Gases: Science and Technology, 2020, 10(2): 472-483. (IF = 2.013) [24] L Li, L Duan*, Z Yang, S Tong, EJ Anthony, C Zhao. Experimental study of a single char particle combustion characteristics in a fluidized bed under O2/H2O condition. Chemical Engineering Journal, 2020, 382: 122942. (IF=13.273) [25] L Li, L Duan*, Z Yang, C Zhao. Pressurized oxy-fuel combustion characteristics of single coal particle in a visualized fluidized bed combustor. Combustion and Flame, 2020, 211: 218-228. (IF=4.185) [26] L Duan*, J Wang, X Qiu, Y Wang, J Wendt, C Zhao. Particulate matter formation and alkali and alkaline earth metal partitioning in a pressurized oxy-fuel fluidized-bed combustor. Energy & Fuels, 2019, 33(11): 10895-10903. (IF = 3.605) [27] L Duan*, L Li, D Liu, C Zhao. Fundamental study on fuel-staged oxy-fuel fluidized bed combustion. Combustion and Flame, 2019, 206: 227-238. (IF=4.185) [28] Y Duan, L Duan*, J Wang, EJ Anthony. Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed. Fuel, 2019, 242: 374-381. (IF=6.609) [29] L Li, L Duan*, S Tong, EJ Anthony. Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres. Fuel Processing Technology, 2019, 186: 8-17. (IF=7.033) [30] L Zhou, L Duan*, EJ Anthony. A calcium looping process for simultaneous CO2 capture and peak shaving in a coal-fired power plant. Applied Energy, 2019, 235: 480-486. (IF=9.746) [31] S Tong, L Li, L Duan*, C Zhao, EJ Anthony. A kinetic study on lignite char gasification with CO2 and H2O in a fluidized bed reactor. Applied Thermal Engineering, 2019, 147: 602-609. (IF=5.295) [32] J Chen, L Duan*, Z Sun. Accurate control of cage-like CaO hollow microspheres for enhanced CO2 capture in calcium looping via a template-assisted synthesis approach. Environmental Science & Technology, 2019, 53(4): 2249-2259. (IF=9.028) [33] J Chen, L Duan*, T Shi, R Bian, Y Lu, F Donat, EJ Anthony. A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO2 capture in a combined Ca–Cu looping process via a template-free synthesis approach. Journal of Materials Chemistry A, 2019, 7(37): 21096-21105. (IF=12.732) [34] L Li, L Duan*, D Zeng, DY Lu, C Bu, C Zhao. Ignition and volatile combustion behaviors of a single lignite particle in a fluidized bed under O2/H2O condition. Proceedings of the Combustion Institute, 2019, 37(4): 4451-4459. (IF 3.757) [35] S Tong, L Li, L Duan*, C Zhao, EJ Anthony. A kinetic study on lignite char gasification with CO2 and H2O in a fluidized bed reactor. Applied Thermal Engineering, 2019, 147: 602-609. (IF = 5.295) [36] J Wang, Y Duan, L Duan*, Y Yan, S Tong, C Zhao. Sulfur enrichment in particulate matter generated from a lab-scale pressurized fluidized bed combustor. Energy & Fuels, 2018, 33(1): 603-611. (IF = 3.605) [37] C Su, L Duan*, EJ Anthony. CO2 capture and attrition performance of competitive eco-friendly calcium-based pellets in fluidized bed. Greenhouse Gases: Science and Technology, 2018, 8(6): 1124-1133. (IF = 2.013) [38] P Yang, L Duan*, H Tang, T Cai, Z Sun. Explaining steam-enhanced carbonation of CaO based on first principles. Greenhouse Gases: Science and Technology, 2018, 8(6): 1110-1123. (IF = 2.013) [39] J Chen, L Duan*, F Donat, CR Müller, EJ Anthony, M Fan. Self-activated, nanostructured composite for improved CaL-CLC technology. Chemical Engineering Journal, 2018, 351: 1038-1046. (IF = 13.273) [40] L Li, Y Duan, L Duan*, C Xu, EJ Anthony. Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition. International Journal of Multiphase Flow, 2018, 108: 1-10. (IF = 3.186) [41] J Cui, L Duan*, Y Jiang, C Zhao, EJ Anthony. Migration and emission of mercury from circulating fluidized bed boilers co-firing petroleum coke and coal. Fuel, 2018, 215: 638-646. (IF = 6.609) [42] C Su, L Duan*, F Donat, EJ Anthony. From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture. Applied Energy, 2018, 210: 117-126. (IF = 9.746) [43] J Cui, L Duan*, L Zhou, C Zhao. Effects of air pollution control devices on the chlorine emission from 410 t/h circulating fluidized bed boilers co-firing petroleum coke and coal. Energy & Fuels, 2018, 32(4): 4410-4416. (IF = 3.605) [44] L Duan*, J Cui, Y Jiang, C Zhao, EJ Anthony. Partitioning behavior of arsenic in circulating fluidized bed boilers co-firing petroleum coke and coal. Fuel Processing Technology, 2017, 166: 107-114. (IF = 7.033) [45] Z Yu, L Duan*, C Su, Y Li, EJ Anthony. Effect of steam hydration on reactivity and strength of cement-supported calcium sorbents for CO2 capture. Greenhouse Gases: Science and Technology, 2017, 7(5): 915-926. (IF = 2.013) [46] L Duan*, J Chen, Y Jiang, X Li, P Longhurst, M Lei. Experimental and kinetic study of thermal decomposition behaviour of phytoremediation derived pteris vittata. Journal of Thermal Analysis and Calorimetry, 2017, 128(2): 1207-1216. (IF = 4.626) [47] L Duan*, X Li, Y Jiang, M Lei, Z Dong, P Longhurst. Arsenic transformation behaviour during thermal decomposition of P. vittata, an arsenic hyperaccumulator. Journal of Analytical and Applied Pyrolysis, 2017, 124: 584-591. (IF = 5.541) [48] Y Duan, L Duan*, EJ Anthony, C Zhao. Nitrogen and sulfur conversion during pressurized pyrolysis under CO2 atmosphere in fluidized bed. Fuel, 2017, 189: 98-106. (IF = 6.609) [49] L Duan*, C Su, M Erans, Y Li, EJ Anthony, H Chen. CO2 capture performance using biomass-templated cement-supported limestone pellets. Industrial & Engineering Chemistry Research, 2016, 55(39): 10294-10300. (IF = 3.720) [50] L Duan, D Godino, V Manovic, F Montagnaro, EJ Anthony*. Cyclic oxygen release characteristics of bifunctional copper oxide/calcium oxide composites. Energy Technology, 2016, 4(10): 1171-1178. (IF = 3.631) [51] L Duan*, Z Yu, M Erans, Y Li, V Manovic, EJ Anthony. Attrition study of cement-supported biomass-activated calcium sorbents for CO2 capture. Industrial & Engineering Chemistry Research, 2016, 55(35): 9476-9484. (IF = 3.720) [52] L Duan*, H Sun, Y Jiang, EJ Anthony, C Zhao. Partitioning of trace elements, As, Ba, Cd, Cr, Cu, Mn and Pb, in a 2.5MWth pilot-scale circulating fluidized bed combustor burning an anthracite and a bituminous coal. Fuel Processing Technology, 2016, 146: 1-8. (IF = 7.033) [53] L Duan*, Y Duan, Y Sarbassov, Y Li, EJ Anthony. SO3 formation under oxy-CFB combustion conditions. International Journal of Greenhouse Gas Control, 2015, 43: 172-178. (IF = 3.738) [54] L Duan*, Y Duan, C Zhao, EJ Anthony. NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor. Fuel, 2015, 150: 8-13. (IF = 6.609) [55] L Duan*, H Sun, C Zhao, W Zhou, X Chen. Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle. Fuel, 2014, 127: 47-51. (IF = 6.609) [56] C Zhao, X Chen, EJ Anthony, X Jiang, L Duan, Y Wu, W Dong, C Zhao*. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Progress in Energy and Combustion Science, 2013, 39(6): 515-534. (IF = 29.394) [57] L Duan*, Z Jiang, X Chen, C Zhao. Investigation on water vapor effect on direct sulfation during wet-recycle oxy-coal combustion. Applied Energy, 2013, 108: 121-127. (IF = 9.746) [58] L Duan*, Z Jiang, X Chen, C Zhao. Investigation on water vapor effect on direct sulfation during wet-recycle oxy-coal combustion. Applied Energy, 2013, 108: 121-127. (IF = 9.746) [59] Z Jiang, L Duan*, X Chen, C Zhao. Effect of water vapor on indirect sulfation during Oxy-fuel combustion. Energy & Fuels, 2013, 27(3): 1505-1512. (IF = 3.605) [60] L Duan*, D Liu, X Chen, C Zhao. Fly ash recirculation by bottom feeding on a circulating fluidized bed boiler co-burning coal sludge and coal. Applied Energy, 2012, 95: 295-299. (IF = 9.746) [61] L Duan*, W Zhou, H Li, X Chen, C Zhao. Sulfur fate during bituminous coal combustion in an oxy-fired circulating fluidized bed combustor. Korean Journal of Chemical Engineering, 2011, 28 (9): 1952-1955. (IF = 3.309) [62] L Duan*, G Xu, D Liu, X Chen, C Zhao. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge. International Symposium on Coal Combustion, 2011, 553-558 [63] L Duan*, C Zhao, W Zhou, C Qu, X Chen. O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed. International Journal of Greenhouse Gas Control, 2011, 5(4): 770-776. (IF = 3.738) [64] L Duan*, C Zhao, Q Ren, Wu Zhou, X Chen. NOx precursors evolution during coal heating process in CO2 atmosphere. Fuel, 2011, 90(4): 1668-1673. (IF = 6.609) [65] L Duan*, C Zhao, W Zhou, C Qu, X Chen. Effects of operation parameters on NO emission in an oxy-fired CFB combustor. Fuel Processing Technology, 2011, 92 (3): 379-384. (IF = 7.033) [66] L Duan, X Chen, Y Li, C Liang, C Zhao*. Investigation on SO2 emission from 410t/h circulating fluidized bed boiler burning petroleum coke and coal. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 274-280. (IF = 1.447) [67] L Duan, C Zhao*, W Zhou, C Liang, X Chen. Sulfur evolution from coal combustion in O2/CO2 mixture. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 269-273. (IF = 5.541) [68] L Duan, C Zhao*, W Zhou, C Qu, X Chen. Investigation on Coal Pyrolysis in CO2 Atmosphere. Energy & Fuels, 2009, 23(7): 3826-3830.(IF = 3.605) [69] 祁建民, 孙和泰, 黄治军, 石志鹏, 段伦博*. 超低排放燃煤电厂SO3和可凝结颗粒物迁移规律研究. 热力发电, 2021, 50(04): 72-77. [70] 段元强, 方冬东, 吴柯, 段伦博*. 煤基直接加热式超临界二氧化碳动力循环系统建模及性能分析. 动力工程学报, 2021, 41(11): 1001-1009. [71] 韩义, 张奇月, 段伦博*, 王研凯, 于英利, 付旭晨, 荣俊, 孙世超.基于机理仿真与数据驱动深度融合的循环流化床机组出力预测. 洁净煤技术, 2021. [72] 石志鹏, 段伦博*, 黄治军. 1000 MW超低排放机组Hg迁移特性. 热力发电, 2021, 50(07): 176-182. [73] 卞若愚, 安忠义, 李启超, 朱纯, 孙镇坤, 段伦博*. O3-NH3协同活性焦脱硫脱硝的均相预反应特性研究. 中国环境科学, 2021, 41(10): 4476-4483. [74] 孙世超, 周镇港, 袁东辉, 郑秀平, 段伦博*. 风幕代替中心筒的旋风分离器性能研究. 洁净煤技术, 2021. [75] 王越明, 刘慧敏, 仇兴雷, 段伦博*. 富氧燃烧颗粒物生成和灰沉积特性研究进展. 洁净煤技术, 2021, 27(02): 17-30. [76] 韩义, 周琳绯, 王研凯, 陈健, 于英利, 段伦博*. 新型MEA法用于燃煤电厂调峰的系统构建及性能研究. 中国电机工程学报, 2021, 41(11): 3722-3730 [77] 段元强, 洪溥, 仇兴雷, 段伦博*. 增压富氧气氛下NOx均相生成及SNCR反应机理研究. 中南大学学报(自然科学版), 2021, 52(01): 96-105. [78] 郑秀平, 袁东辉, 孙世超, 段伦博*, 赵长遂. 循环流化床锅炉效率可调旋风分离器数值模拟与试验研究. 热力发电, 2020, 49(05): 132-139. [79] 吴柯, 鲍中凯, 段伦博*, 黄宇. 燃煤sCO2布雷顿循环及其工质传热特性研究进展. 洁净煤技术, 2020, 26(01): 9-21. [80] 韩义, 张奇月, 王研凯, 于英利, 付旭晨, 荣俊, 段伦博*. 基于BP神经网络的300 MW循环流化床机组出力预测. 华电技术, 2020, 42(12): 1-6. [81] 袁东辉, 孙世超, 郑秀平, 韩义, 王研凯, 段伦博*. CFB锅炉可调效率的旋风分离器性能数值模拟研究. 洁净煤技术, 2020, 26(06): 159-167. [82] 张振民, 陈健, 王研凯, 连世文, 李丰泉, 王超, 袁东辉, 李迎春, 段伦博*. 惰性载体支撑钙铜复合吸收剂的碳酸化性能及其动力学分析. 石油学报(石油加工), 2020, 36(06): 1389-1397. [83] 阎永亮, 查健锐, 段伦博*, CLOUGH Peter. 应用不同机器学习算法预测化学链中氧载体性能. 洁净煤技术, 2020, 27(02): 220-224. [84] 段伦博*, 石志鹏, 黄治军. 燃煤电站SO3生成、转变及控制技术研究进展. 燃烧科学与技术, 2020, 26(05): 391-404. [85] 孙和泰, 黄治军, 华伟, 石志鹏, 段伦博*. 超低排放燃煤电厂可凝结颗粒物排放特性. 洁净煤技术, 2020, 27(05): 218-223. [86] 吴柯, 鲍中凯, 段伦博*, 黄宇. 燃煤sCO2布雷顿循环及其工质传热特性研究进展. 洁净煤技术, 2020, 26(01): 9-21. [87] 郑秀平, 袁东辉, 孙世超, 段伦博*, 赵长遂. 循环流化床锅炉效率可调旋风分离器数值模拟与试验研究. 热力发电, 2020, 49(05): 132-139. [88] 张奇月, 颜勇, 段元强, 段伦博*. 超超临界350 MW富氧燃烧循环流化床设计. 热力发电, 2020, 49(05): 73-80. [89] 华伟, 孙和泰, 祁建民, 黄治军, 石志鹏, 段伦博*. 燃煤电厂超低排放机组重金属铅、砷排放特性. 热力发电, 2019, 49(10): 65-70. [90] 颜勇, 段伦博*, 段元强.燃料粒径调控匹配循环流化床富氧燃烧高氧浓度运行研究. 动力工程学报, 2019, 39(09): 693-699. [91] 薛现恒, 于英利, 韩义, 高正平, 孙世超, 段伦博*. 基于空气深度分级燃烧的循环流化床旋风分离器改造数值模拟. 热力发电, 2019, 48(06): 58-64 [92] 薛现恒, 邓雨生, 段伦博*, 孙世超, 郑文凯, 赵长遂. 基于410t/h Compact型流化床锅炉的SNCR影响因素探究. 锅炉技术, 2019, 50(03): 30-35. [93] 邓雨生, 崔健, 黄郑贤, 王佩, 段元强, 段伦博*. 混燃石油焦循环流化床锅炉Pb排放特性. 洁净煤技术, 2019, 25(02): 108-113. [94] 陈健, 段伦博*, 卞若愚, 谭茗月, 石田, 卢欲晓, 赵长遂. 钙基中空微球的碳酸化性能及其动力学分析. 东南大学学报(自然科学版), 2019, 49(04): 757-763. [95] 石田,陈健,段伦博*,赵长遂. 溶液燃烧合成法制备自活化钙铜复合CO2吸收剂的性能[J]. 化工进展, 2018, 37(08): 3086-3091. [96] 蔡维中, 崔健, 邓雨生, 黄海鹏, 梁树雄, 段伦博*. 基于多物流测试的循环流化床锅炉汞迁移和排放特性研究[J]. 动力工程学报, 2018, 38(06): 479-483+507. [97] 邓雨生, 崔健, 郑文凯, 段伦博*. 混燃石油焦CFB锅炉汞排放特性研究[J]. 热能动力工程, 2018, 33(04): 76-82. [98] 李小乐, 段伦博*, 余志健, 颜勇, 赵长遂. 添加剂对蜈蚣草燃烧过程中砷迁移规律的影响[J]. 中国环境科学, 2018, 38(02): 643-650. [99] 崔健, 段伦博*, 赵长遂. 混燃石油焦循环流化床锅炉硫污染物排放特性[J]. 化工学报, 2018, 69(05): 2158-2165. [100] 余志健, 段伦博*, 李小乐, 苏成林, 赵长遂. 机械成型水泥支撑钙基吸收剂脱碳活性及强度[J]. 化工进展, 2017, 36(06): 2222-2229. [101] 李小乐, 段伦博*, 赵长遂. 不同气氛下蜈蚣草热处理过程中砷的迁移规律[J]. 中国环境科学, 2017, 37(04): 1418-1425. [102] 余志健, 段伦博*, 苏成林, 赵长遂. 蒸汽活化水泥支撑钙基吸收剂活性及强度特性[J]. 化工学报, 2017, 68(04): 1637-1645. [103] 李小乐, 段伦博*, 雷梅, 赵长遂. 蜈蚣草燃烧过程中As迁移转化规律[J]. 化工学报, 2017, 68(01): 281-288. [104] 孙虹, 华伟, 黄治军, 孙栓柱, 余志健, 段伦博*. 基于CFD建模的1000MW电站锅炉SCR脱硝系统喷氨策略优化[J]. 动力工程学报, 2016, 36(10): 810-815+821. [105] 李小乐, 孙海程, 段伦博*, 赵长遂. 不同添加剂/吸附剂对循环流化床燃烧痕量元素迁移的影响规律[J]. 燃烧科学与技术, 2016, 22(01): 45-49. [106] 段元强, 段伦博*, 胡海华, 赵长遂. 煤在增压流化床O2/CO2气氛下的燃烧及污染物排放特性(英文)[J]. Journal of Southeast University(English Edition), 2015, 31(02): 188-193. [107] 胡海华, 段伦博*, 陈晓平, 韩冬, 潘玄. 增压O2/CO2气氛下煤燃烧特性实验研究[J].燃料化学学报, 2014, 42(04): 408-413. [108] 韩冬, 段伦博*, 段钰锋, 胡海华, 潘玄. 增压O2/C O2燃烧热力系统建模及压力优化[J].中国电机工程学报, 2014, 34(05): 756-762. [109] 姜中孝, 段伦博, 陈晓平. 水蒸气对O2/CO2气氛下煤焦燃烧特性的影响. 煤炭学报, 2013, 38(3): 466-472. [110] 姜中孝, 段伦博*, 陈晓平, 裴小建. O2/CO2气氛下水蒸气对直接脱硫的影响[J].工程热物理学报, 2013, 34(12): 2388-2391. [111] 韩冬, 段伦博*, 段钰锋, 胡海华, 潘玄. 富氧燃烧全流程建模及系统优化[J].煤炭学报, 2013, 38(12): 2241-2246. [112] 姜中孝, 段伦博*, 陈晓平, 赵长遂. 空气燃烧与O2/CO2燃烧气氛下水蒸气对石灰石煅烧/硫化特性的影响[J].中国电机工程学报, 2013, 33(26): 14-20+1. [113] 段伦博*, 姜中孝, 潘玄, 陈晓平, 赵长遂. Oxy-CFB燃烧及污染物排放特性[J]. 工程热物理学报, 2013, 34(08): 1574-1577. [114] 姜中孝, 段伦博*, 陈晓平. 水蒸气对O2/CO2气氛下煤焦燃烧特性的影响[J]. 煤炭学报, 2013, 38(03): 466-472. [115] 段伦博*, 周骛, 屈成锐, 陈晓平, 赵长遂. O2/CO2气氛下循环流化床煤燃烧SO2排放[J]. 工程热物理学报, 2012, 33(01): 151-154. [116] 段伦博*, 任强强, 周骛, 屈成锐, 陈晓平, 赵长遂. CO2气氛对燃料N析出特性的影响[J]. 工程热物理学报, 2011, 32(03): 517-520. [117] 段伦博*, 周骛, 屈成锐, 陈晓平, 赵长遂. 50kW循环流化床O2/CO2气氛下煤燃烧及污染物排放特性[J]. 中国电机工程学报, 2011, 31(05): 7-12. [118] 段伦博, 李艳敏, 刘道银, 陈晓平, 赵长遂. 循环流化床锅炉掺烧煤泥飞灰底饲回燃试验[J]. 煤炭学报, 2010, 35(09): 1537-1541. [119] 段伦博, 赵长遂, 周骛, 屈成锐, 李英杰, 陈晓平. CO2气氛对烟煤热解过程的影响[J]. 中国电机工程学报, 2010, 30(02): 62-66. [120] 段伦博, 赵长遂, 李庆钊, 李英杰, 陈晓平. O2/CO2气氛下煤焦燃烧实验研究[J]. 燃料化学学报, 2009, 37(06): 654-658. [121] 段伦博,赵长遂,李英杰,屈成锐,周骛,陈晓平. 不同热解气氛煤焦结构及燃烧反应性[J].东南大学学报(自然科学版), 2009, 39(05): 988-991. [122] 段伦博, 周骛, 卢骏营, 李英杰, 陈晓平, 赵长遂. CO2浓度对煤焦燃烧及污染物排放特性影响的试验研究[J]. 动力工程, 2009, 29(06): 571-575. [123] 段伦博, 赵长遂, 卢骏营, 周骛, 李英杰, 陈晓平. O2/CO2气氛下煤燃烧SO2/NO析出特性[J]. 化工学报, 2009, 60(05): 1268-1274. [124] 段伦博, 赵长遂, 李英杰, 卢骏营, 周骛, 陈晓平. O2/CO2气氛下烟煤燃烧过程中S的析出特性[J]. 中国电机工程学报, 2008, 28(35): 9-13. [125] 段伦博, 赵长遂, 屈成锐, 周骛, 卢骏营. 循环流化床O2/CO2燃烧技术的最新进展[J]. 动力工程, 2008(04): 605-611. [126] 段伦博, 赵长遂, 李英杰, 陈晓平. 掺烧石油焦410t/h循环流化床锅炉NOx排放特性研究[J]. 热能动力工程, 2008(04): 391-394+443. [127] 段伦博, 陈晓平, 梁财, 李英杰, 李庆钊, 赵长遂. 以煤焦混合物为燃料的循环流化床锅炉SO2排放特性[J]. 化工学报, 2008(03): 728-734.
|