刘道银

能源工程系副教授、博士生导师

通讯方式:dyliu.at.seu.edu.cn

研究方向:

多相流动与反应的数值模拟;微纳米颗粒气相法制备


办公地点:热能所302室

 

 

个人简介

刘道银,分别于2005年和2011年获东南大学学士和博士学位。2011年毕业后留校任教。2014至2015年在荷兰Delft理工大学访学。主要从事多相流动和反应数值模拟、微纳米颗粒材料制备等研究。主持国家自然科学基金项目、国家重点研发计划项目子课题、企事业研发项目等20余项,发表论文50余篇,培养研究生10多名。

教学课程

本科生课程:燃烧学

本科生课程:能源与环境工程的CFD技术

研究生课程:流动与传热的数值方法

科研 教改项目

[1] 国家自然科学基金面上项目:内循环流化床原子层沉积过程的纳米颗粒包覆机理研究,2024-2027,主持 

[2] 国家自然科学基金面上项目:定向流场喷雾流化床内颗粒涂层和生长的机理研究,2020-2023,主持

[3] 国家自然科学基金面上项目:纳米颗粒团聚流化的微观机理和模型研究,2017-2020,主持

[4] 国家自然科学基金青年基金项目:湿颗粒体系的流态化行为及机理研究,2014-2016,主持

[5] 国家自然科学基金重大研究计划培育项目:流化床化学气相沉积过程纳米粒子,2017-2019,合作

[6] 国家自然科学基金面上项目:O2/CO2 流化床燃烧机理及基于CFD-DEM 反应流模型的研究,2013-2016,合作

[7] 国家“十三五”重点研发项目——子课题:加圧流化床气固流动机理研究,2016-2020,主持

[8] 国家“十三五”工信部项目——课题:高效炉膛设计技术研究,2017-2019,主持


[1] 校级教改, 研究生在线开放课程_计算流体力学, 2023年,主持

[2] 校级教改, 计算流体力学基础与应用(校级教材建设), 2020年,主持

[3] 校级教改, 能源与环境工程CFD技术(课程思政示范课程), 2019年,主持


论文 专著

[1] Zhang Z, Liu D. A finite-discrete element model for simulating collision and fragmentation of nanoparticle agglomerates. AIChE J. 2024;70:e18275.

[2] Xiong L, Liu D, Duan L, Sun Z, Chen H, Liang C. Mass-producible γ-Al2O3/CaCO3 core–shell thermochemical energy storage particles by fluidized bed spray granulation. Chemical Engineering Journal. 2024;495:153688.

[3] Wu Y, Liu D, van Wachem BGM, van Ommen JR. Simulation of Nanoparticle Agglomerate Fluidization Based on Continuum Theory of Cohesive Particles. Ind Eng Chem Res. 2024;63:7453-64.

[4] Liu W, Zhang Z, Liu D. Comparison of SiO2/TiO2 photocatalysts with different thicknesses synthesized by fluidized bed atomic layer deposition. Powder Technol. 2024;438:119613.

[5] Liu W, Liu D, Zhang Z, Sun Z. Synthesis of core-shell nanostructured SiO2/TiO2 photocatalysts via atomic layer deposition in a fluidized bed with central tube. Particuology. 2024;91:19-28.

[6] Guo J, Liu D, Ma J, Liang C, Chen X. Particle residence time distribution and axial dispersion coefficient in a pressurized circulating fluidized bed by using multiphase particle-in-cell simulation. Chin J Chem Eng. 2024;69:167-76.

[7] Guo J, Liu D, Ma J, Liang C, Chen X. Particle circulation and coating in a Wurster fluidized bed under different geometries. Powder Technol. 2024;433:119223.

[8] Fan Z, Liu D, Shen X, Liu N, Ma J, Chen X. Comparison of Newtonian and glycerol-water solution-based SiO2 nanofluid droplets impacting on heated spherical surfaces. Int J Heat Mass Transfer. 2024;228:125662.

[9] Fan Z, Liu D, Liang C, Chen X. Comprehensive study on collision patterns of viscous droplets impacting on a heated particle. Experimental Thermal and Fluid Science. 2024;158:111259.

[10] Fan Z, Liu D, Liang C, Chen X. Numerical simulation of collision dynamics between a dry particle and a liquid-coated wet particle. Powder Technol. 2024;434:119308.

[11] Fan Z, Liu D, Liang C, Chen X. Numerical simulation of mid-air collisions between droplets and particles: An examination of particle forces and kinetic energy dissipation. Powder Technol. 2024;432:119124.

[12] Zhang L, Liu D, Wu X, Zhang W, Feng H. Enhancing fluidization quality of nanoparticle agglomerates by combining vibration, stirring and jet assistances. Powder Technol. 2023;430:118996.

[13] Liu W, Tang H, Liu D. Combining density functional theory and CFD-PBM model to predict TiO2 nanoparticle evolution during chemical vapor deposition. Chemical Engineering Journal. 2023;454:140174.

[14] Liu D, Liu W, Ma J, Liang C, Chen X. Investigation of CO2 Capture in Three-Dimensional Full-Loop Integrated Bubbling-Transport Bed Adsorber. Ind Eng Chem Res. 2023;62:17691-700.

[15] Liu D, Guo J, Ma J, Liang C, Chen X. Effects of Seed Particle Properties on Coating in a Wurster Fluidized Bed. Ind Eng Chem Res. 2023;62:15687-98.

[16] Li H, Liu D, Ma J, Chen X. Influence of cycle time distribution on coating uniformity of particles in a spray fluidized bed by using CFD-DEM simulations. Particuology. 2023;76:151-64.

[17] Geng P, Ma J, Chen X, Liu D, Pan S, Liang C. Collision regimes and dynamic behaviors of a viscous droplet impacting on a spherical particle at high temperatures. Phys Fluids. 2023;0:null.

[18] Fan Z, Liu D, Pan S, Ma J, Chen X. Spreading dynamics of the viscous droplet impacting on a spherical particle. Phys Fluids. 2023;35:023311.

[19] Dong Z, Liu D, Liang C, Hao M, Dai T, Ding H. Optimization of film cooling arrays on a gas turbine vane by using an integrated approach of numerical simulation and parameterized design. Applied Thermal Engineering. 2023;219:119464.

[20] Chen B, Liu D, Liu M. Combining Langevin dynamics and CFD-PBM model to predict TiO2 nanoparticle evolution during aerosol synthesis. Applied Thermal Engineering. 2023;230:120702.

[21] Chen B, Liu D, Chen Z, Liu M. Langevin dynamics simulation and collision frequency modification in population balance model of nanoparticle coagulation during simultaneous agglomeration and sintering. J Aerosol Sci. 2023;174:106259.

[22] Cai J, Xu J, You M, Liang C, Liu D, Ma J, et al. Flow characteristics and pattern transition of different pipe diameters in pneumatic conveying for gasifier. Chem Eng Res Des. 2023;189:282-95.

[23] 刘道银, 范志恒, 马吉亮, 陈晓平. 湿颗粒倾斜碰撞恢复系数的直接数值模拟. 化工学报. 2023;74:4063-73.

[24] 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟. 化工学报. 2023;74:2351-62.

[25] Xiong MJ, Liu DY, Chen XP, Ma JL, Ma LK. Characteristics of a Methane Jet Flame in Elevated Pressure and Oxy-Fuel Atmosphere Using Large Eddy Simulation with Tabulated Chemistry. Combust Sci Technol. 2022;194:700-20.

[26] Wang C, Liu D, Ma J, Liang C, Chen X. Characterization of coating shells in a Wurster fluidized bed under different drying conditions and solution viscosities. Powder Technol. 2022;411:117914.

[27] Shao L, Liu D, Ma J, Chen X. Experimental characterization of the effect of liquid viscosity on collisions between a multi-component droplet and a heated particle. Chem Eng Sci. 2022;261:117968.

[28] Shao L, Liu D, Ma J, Chen X. Normal collision between partially wetted particles by using direct numerical simulation. Chem Eng Sci. 2022;247:117090.

[29] Liu W, Liu D, Zhang Y, Li B. Numerical investigation of particle size distribution, particle transport and deposition in a modified chemical vapor deposition process. Powder Technol. 2022;407:117616.

[30] Liu W, Liu D, Liu M. Effects of process parameters on preparation of Ti@SiO2 particles during fluidized bed chemical vapor deposition via design of experiments. Chem Eng Res Des. 2022;187:425-33.

[31] Li H, Liu D, Ma J, Chen X. Simulation of a Wurster fluidized bed by CFD–DEM with a cohesive contact model. Chem Eng Res Des. 2022;177:157-66.

[32] Feng Z, Liu D, Zhang W, Feng H, Ruud van Ommen J. Elutriation and agglomerate size distribution in a silica nanoparticle vibro-fluidized bed. Chemical Engineering Journal. 2022;434:134654.

[33] Wu Y, Liu D, Hu J, Ma J, Chen X. Comparative study of two fluid model and dense discrete phase model for simulations of gas-solid hydrodynamics in circulating fluidized beds. Particuology. 2021;55:108-17.

[34] Ma JL, Liu DY, Chen XP, Liang C, van Ommen JR. X-ray tomography analysis of bubbles and slugs in a fluidized bed with inter-particle force. Int J Multiphase Flow. 2021;145.

[35] Hu J, Liu D, Liang C, Ma J, Chen X, Zhang T. Solids flow characteristics and circulation rate in an internally circulating fluidized bed. Particuology. 2021;54:69-77.

[36] Hu J, Liu D, Li H, Liang C, Chen X. Experimental study of the solid circulation rate in a pressurized circulating fluidized bed. Particuology. 2021;56:207-14.

[37] 赵之端, 赵蒙, 刘道银, 梁财, 马吉亮, 陈晓平. 振动和搅拌对SiO2纳米颗粒聚团流化的影响对比研究. 工程热物理学报. 2021;42:136-42.

[38] 刘道银, 王利民. 计算流体力学基础与应用: 东南大学出版社; 2021.

[39] Zhao Z, Liu D, Ma J, Chen X. Fluidization of nanoparticle agglomerates assisted by combining vibration and stirring methods. Chemical Engineering Journal. 2020;388:124213.

[40] Zhao M, Liu D, Ma J, Chen X. CFD-DEM simulation of gas-solid flow of wet particles in a fluidized bed with immersed tubes. Chemical Engineering and Processing-Process Intensification. 2020;156.

[41] Liu D, Song J, Ma J, Chen X, van Wachem B. Gas flow distribution and solid dynamics in a thin rectangular pressurized fluidized bed using CFD-DEM simulation. Powder Technol. 2020;373:369-83.

[42] Liu D, Hu J, Song J, Liang C, Xu C, Chen X. Effect of elevated pressure on gas-solid flow characteristics in a circulating fluidized bed. Powder Technol. 2020;366:470-6.

[43] Wu Y, Liu D, Zheng D, Ma J, Duan L, Chen X. Numerical simulation of circulating fluidized bed oxy-fuel combustion with Dense Discrete Phase Model. Fuel Process Technol. 2019;195.

[44] Liu DY, van Wachem B. Comprehensive assessment of the accuracy of CFD-DEM simulations of bubbling fluidized beds. Powder Technol. 2019;343:145-58.

[45] 顾璠, 黄亚继, 刘道银. 燃烧学基础: 东南大学出版社; 2019.

[46] Wu Y, Liu D, Ma J, Chen X. Effects of gas-solid drag model on Eulerian-Eulerian CFD simulation of coal combustion in a circulating fluidized bed. Powder Technol. 2018;324:48-61.

[47] Wu Y, Liu D, Duan L, Ma J, Xiong J, Chen X. Three-dimensional CFD simulation of oxy-fuel combustion in a circulating fluidized bed with warm flue gas recycle. Fuel. 2018;216:596-611.

[48] Song J, Liu D, Ma J, Chen X. Effect of elevated pressure on bubble properties in a two-dimensional gas-solid fluidized bed. Chem Eng Res Des. 2018;138:21-31.

[49] Liu D, Wang Z, Chen X, Liu M. Simulation of agglomerate breakage and restructuring in shear flows: Coupled effects of shear gradient, surface energy and initial structure. Powder Technol. 2018;336:102-11.

专利申请

[1] 刘道银等. 定量研究颗粒粘性力对流化床气固流动影响的实验方法,授权公告号: CN103236208B,授权公告日:2015.01.28.

[2] 刘道银等. 一种可视化高温流化床,授权公告号:CN103285786B,授权公告日: 2015.08.26.

荣誉 奖励

2019年度教育部自然科学奖二等奖(第3);2019年度江苏省科学技术奖二等奖(第8);2022年江苏省工程热物理学会科学技术奖一等奖(第1)。

指导学生

每年招收博士研究生1人、硕士研究生2-3人。