[1] 任少君*, 朱保宇, 翁琪航, 等. 基于物理信息神经网络的燃煤锅炉NOx排放浓度预测方法[J]. 中国电机工程学报, 2024, 44(20): 8157-8166. [2] 任少君, 朱保宇, 翁琪航, 等. 基于数据增强和模型迁移的生物质气化产物分布预测方法[J]. 中国电机工程学报, 2024, 44(18): 7309-7321. [3] Zhu B, Ren S*, Weng Q, Si F. A physics-informed neural network that considers monotonic relationships for predicting NOx emissions from coal-fired boilers [J]. Fuel, 2024, 364: 131026. [4] Ren S*, Wu S, Weng Q, Zhu B, Deng Z. Disentangled Representation Aided Physics-Informed Neural Network for Predicting Syngas Compositions of Biomass Gasification [J]. Energy & Fuels, 2024, 38(3): 2033-2045. [5] Weng Q, Ren S*, Zhu B, Jin Y. Reconstruction-based stacked sparse auto-encoder for nonlinear industrial process fault diagnosis [J]. Maintenance & Reliability/Eksploatacja i Niezawodność, 2024, 26(1): 1-16. [6] Ren S*, Wu S, Weng Q. Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships[J]. Bioresource Technology, 2023, 369: 128472. [7] Ren S*, Jin Y, Zhao J, et al. Nonlinear process monitoring based on generic reconstruction-based auto-associative neural network[J]. Journal of the Franklin Institute, 2023, 360(7): 5149-5170. [8] Fan W, Ren S*, Yu C, et al. A mixture of probabilistic predictable feature analysis for multi-mode dynamic process monitoring[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143: 104635. [9] Ren S*, Si F, Cao Y. Development of Input Training Neural Networks for Multiple Sensor Fault Isolation[J]. IEEE Sensors Journal, 2022, 22(15): 14997-15009. [10] Wang P, Ren S*, Wang Y, et al. Quality-related nonlinear process monitoring of power plant by a novel hybrid model based on variational autoencoder[J]. Control Engineering Practice, 2022, 129: 105359. [11] Fan W, Zhu Q*, Ren S*, et al. Multivariate temporal process monitoring with graph‐based predictable feature analysis[J]. The Canadian Journal of Chemical Engineering, 2023, 101(2): 909-924. [12] Fan W, Zhu Q*, Ren S*, L Zhang, F Si. Robust probabilistic predictable feature analysis and its application for dynamic process monitoring[J]. Journal of Process Control, 2022, 112: 21-35. [13] Fan W, Zhu Q*, Ren S*, L Zhang, F Si. Dynamic probabilistic predictable feature analysis for multivariate temporal process monitoring[J]. IEEE Transactions on Control Systems Technology, 2022, 30(6): 2573-2584. [14] Ren S, Si F*, Zhou J, Z Qiao, Y Cheng. A new reconstruction-based auto-associative neural network for fault diagnosis in nonlinear systems[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 172: 118-128. [15] Ren S, Si F*, Gu H. Multiple sensor validation for natural gas combined cycle power plants based on robust input training neural networks[J]. Journal of Chemical Engineering of Japan, 2017, 50(3): 186-194. [16] Ren S*, Charles J, Wang X C, et al. Corrosion testing of metals in contact with calcium chloride hexahydrate used for thermal energy storage[J]. Materials and Corrosion, 2017, 68(10): 1046-1056.
|