[1] Wang Y, Qiu X, Niu X, Zhou Z, Duan Y, Duan L. Particulate matter formation mechanism in pressurized fluidized bed combustion of various solid fuels. Journal of the Energy Institute 2022;105:167-175. [2] Qiu X, Wang Y, Zhou Z, Duan Y, Duan L. Particulate matter formation mechanism during pressurized air-and oxy-coal combustion in a 10kWth fluidized bed. Fuel Processing Technology 2022;225:107064. [3] 王越明, 刘慧敏, 仇兴雷, 段伦博. 富氧燃烧颗粒物生成和灰沉积特性研究进展. Clean Coal Technology 2021;27(2). [4] Zhou Z, Qiu X, Wang Y, Duan Y, Li L, Lin H, Luo Y, Sun Z, Duan L. Particulate matter formation during shoe manufacturing waste combustion in a full-scale CFB boiler. Fuel Processing Technology 2021;221:106914. [5] Zhan Z, Chiodo A, Zhou M, Davis K, Wang D, Beutler J, Cremer M, Wang Y, Wendt JO. Modeling of the submicron particles formation and initial layer ash deposition during high temperature oxy-coal combustion. Proceedings of the Combustion Institute 2021;38(3):4013-4022. [6] Wang Y, Qiu X, Zhou Z, Duan Y, Li L, Dai J, Lin H, Luo Y, Sun Z, Duan L. Ash deposition mechanism of shoe manufacturing waste combustion in a full-scale CFB boiler. Fuel Processing Technology 2021;221:106948. [7] Li X, Wang Y, Wendt JO. Characteristics of the sub-micron ash aerosol generated during oxy-coal combustion at atmospheric and elevated pressures. Proceedings of the Combustion Institute 2021;38(3):4063-4071. [8] Fakourian S, McAllister Z, Fry A, Wang Y, Li X, Wendt JO, Dai J. Modeling ash deposit growth rates for a wide range of solid fuels in a 100 kW combustor. Fuel Processing Technology 2021;217:106777. [9] Zhou M-m, Parra-Álvarez JC, Smith PJ, Isaac BJ, Thornock JN, Wang Y, Smith ST. Large-eddy simulation of ash deposition in a large-scale laboratory furnace. Proceedings of the Combustion Institute 2019;37(4):4409-4418. [10] Wang Y, Wu J, Li X, Yu D, Xu M, Wendt JO. Ash aerosol partitioning and ash deposition during the combustion of petroleum coke/natural gas mixtures. Fuel 2019;256:115982. [11] Wang Y, Wu J, Li X, Han J, Yu D, Xu M, Wendt JO. Comparison study of ash partitioning and deposition behavior between two rice husk fuels under a 100 kW combustor. Energy & Fuels 2019;33(11):11968-11975. [12] Wang Y, Van Devener B, Li X, Wendt JO. High resolution STEM/EDX spectral imaging to resolve metal distributions within∼ 100 nm combustion generated ash particles. Aerosol Science and Technology 2019;53(7):783-792. [13] Wang Y, Li X, Wendt JO. On ash deposition rates from air and Oxy-Combustion of pulverized coal, petroleum coke, and biomass. Energy & Fuels 2019;33(7):5849-5858. [14] Zhou M-m, Parra-Álvarez JC, Smith PJ, Isaac BJ, Thornock JN, Wang Y, Smith ST. Large-eddy simulation of ash deposition in a large-scale laboratory furnace. Proceedings of the Combustion Institute 2018. [15] Wang Y, Li X, Wendt JO. Ash aerosol and deposition formation mechanisms during air/oxy-combustion of rice husks in a 100 kW combustor. Energy & Fuels 2018;32(4):4391-4398. [16] Liu H, Wang Y, Wendt JO. Particle Size Distributions of Fly Ash Arising from Vaporized Components of Coal Combustion: A Comparison of Theory and Experiment. Energy & Fuels 2017.
|