[1] Gao H, Wang Y, Wang Y*, Zhou M, Duan L* (2024). Understanding flame behaviors under gradient magnetic fields: The dynamics of non-reacting gas jets. International Communications in Heat and Mass Transfer, 159, 108066. [2] Wang Y, He J, Wang Y, Sun F, Lu C, Zhang S, Duan L. Development of an integrated online deposition and corrosion monitoring system in a full-scale solid waste CFB boiler. Waste Management. 2024; 1;189:211-8. [3] Wang Y, Wang Y*, Zhou M, Zhou H, Duan L*. The influence of self-assembled particle layer on particle collision properties. Powder Technology. 2024; 1;446:120138. [4] Gao H, Wang Y*, Zhou M, Wang Y, Duan L*. Exploring the stabilization mechanism of NH3/CH4 non-premixed flames under gradient magnetic fields. International Journal of Hydrogen Energy. 2024; 4;73:165-73. [5] Wang Y, Niu X, Liu H, Li X, Duan L. Towards a comprehensive understanding of PM1 formation in pressurized oxy-fuel combustion: A study comparing model predictions with experimental data. Journal of the Energy Institute 2024;113:101441. [6] Niu X, Wang Y*, Liu H, Li X, Duan L*. The impact of chlorine and sulfur on alkali metal migration and submicron particle formation during solid fuel combustion. Journal of the Energy Institute 2024:101588. [7] Gao H, Li J, Li A, Li Y, Xu X, Wang Y*, Zhou M, Wu W, Duan L*. Optimizing micro-diffusion flame energy density and stability through the application of magnetic fields: A numerical study. Int J Hydrogen Energy 2024;51:179-189. [8] Wang Y, Wang Y, Zhang S, Zhou M, Duan L. Comprehensive Study on Particle–Wall Interactions: From Microscopic Parameters to Macroscopic Implications. Industrial & Engineering Chemistry Research 2023;62(50):21740-21749. [9] Wang Y, Zhou M, Li X, Zhan Z, Wendt JO, Duan L. Improved Comprehensive Mechanism for Initial Deposit Formation: The Role of Thermophoresis and Glue Effect in Solid Fuel Combustion. Energy Fuels 2023;37(20):16011-16021. [10] Wang Y, Qiu X, Niu X, Zhou Z, Duan Y, Duan L. Particulate matter formation mechanism in pressurized fluidized bed combustion of various solid fuels. Journal of the Energy Institute 2022;105:167-175. [11] Qiu X, Wang Y, Zhou Z, Duan Y, Duan L. Particulate matter formation mechanism during pressurized air-and oxy-coal combustion in a 10kWth fluidized bed. Fuel Processing Technology 2022;225:107064. [12] 王越明, 刘慧敏, 仇兴雷, 段伦博. 富氧燃烧颗粒物生成和灰沉积特性研究进展. Clean Coal Technology 2021;27(2). [13] Zhou Z, Qiu X, Wang Y, Duan Y, Li L, Lin H, Luo Y, Sun Z, Duan L. Particulate matter formation during shoe manufacturing waste combustion in a full-scale CFB boiler. Fuel Processing Technology 2021;221:106914. [14] Zhan Z, Chiodo A, Zhou M, Davis K, Wang D, Beutler J, Cremer M, Wang Y, Wendt JO. Modeling of the submicron particles formation and initial layer ash deposition during high temperature oxy-coal combustion. Proceedings of the Combustion Institute 2021;38(3):4013-4022. [15] Wang Y, Qiu X, Zhou Z, Duan Y, Li L, Dai J, Lin H, Luo Y, Sun Z, Duan L. Ash deposition mechanism of shoe manufacturing waste combustion in a full-scale CFB boiler. Fuel Processing Technology 2021;221:106948. [16] Li X, Wang Y, Wendt JO. Characteristics of the sub-micron ash aerosol generated during oxy-coal combustion at atmospheric and elevated pressures. Proceedings of the Combustion Institute 2021;38(3):4063-4071. [17] Fakourian S, McAllister Z, Fry A, Wang Y, Li X, Wendt JO, Dai J. Modeling ash deposit growth rates for a wide range of solid fuels in a 100 kW combustor. Fuel Processing Technology 2021;217:106777. [18] Zhou M-m, Parra-Álvarez JC, Smith PJ, Isaac BJ, Thornock JN, Wang Y, Smith ST. Large-eddy simulation of ash deposition in a large-scale laboratory furnace. Proceedings of the Combustion Institute 2019;37(4):4409-4418. [19] Wang Y, Wu J, Li X, Yu D, Xu M, Wendt JO. Ash aerosol partitioning and ash deposition during the combustion of petroleum coke/natural gas mixtures. Fuel 2019;256:115982. [20] Wang Y, Wu J, Li X, Han J, Yu D, Xu M, Wendt JO. Comparison study of ash partitioning and deposition behavior between two rice husk fuels under a 100 kW combustor. Energy & Fuels 2019;33(11):11968-11975. [21] Wang Y, Van Devener B, Li X, Wendt JO. High resolution STEM/EDX spectral imaging to resolve metal distributions within∼ 100 nm combustion generated ash particles. Aerosol Science and Technology 2019;53(7):783-792. [22] Wang Y, Li X, Wendt JO. On ash deposition rates from air and Oxy-Combustion of pulverized coal, petroleum coke, and biomass. Energy & Fuels 2019;33(7):5849-5858. [23] Zhou M-m, Parra-Álvarez JC, Smith PJ, Isaac BJ, Thornock JN, Wang Y, Smith ST. Large-eddy simulation of ash deposition in a large-scale laboratory furnace. Proceedings of the Combustion Institute 2018. [24] Wang Y, Li X, Wendt JO. Ash aerosol and deposition formation mechanisms during air/oxy-combustion of rice husks in a 100 kW combustor. Energy & Fuels 2018;32(4):4391-4398. [25] Liu H, Wang Y, Wendt JO. Particle Size Distributions of Fly Ash Arising from Vaporized Components of Coal Combustion: A Comparison of Theory and Experiment. Energy & Fuels 2017.
|