杨柳

制冷与建筑环境系教授,博导
院长助理

通讯方式:Yang_liu@seu.edu.cn

研究方向:

1、太阳能利用及新型储能;

2、纳米技术及传热传质;

3、新型热力循环分析及优化;

4、制冷空调及热泵系统

办公地点:九龙湖校区能源大楼1017

 

 

个人简介

杨柳,教授、博导,院长助理,2007年本科毕业于西安交通大学,2014年6月博士毕业于东南大学,主要研究方向为太阳能利用及新型储能、纳米技术及传热传质、新型热力循环分析及优化、制冷空调热泵系统等。担任国际期刊Journal of Thermal Engineering的Regional Editor(China)、Energy客座编辑、第十六届全国大学生节能减排大赛副秘书长、江苏省大学生节能减排大赛秘书长等职务,入选江苏省六大人才高峰高层次人才、东南大学至善青年学者、江苏省科协青年科技人才托举工程等,主持国家自然科学基金4项,江苏省自然科学青年基金和省双碳专项资金项目各1项,参与国家级和省部级项目十余项。2015年于日本横滨担任国际制冷大会吸收/吸附制冷分会场主席,获“能源与环境学院最受欢迎老师”、“全校最受欢迎老师”、“东南大学杰出教学奖-教学新秀奖”、“中国能源研究会优秀青年科技工作者”等荣誉。指导学生获得江苏省本科生优秀毕业论文一等奖、教育部能源动力类百篇优秀本科毕业论文、东南大学优秀硕士论文等。指导学生获得国家级/省级竞赛奖项30余次,包括全国大学生节能减排社会实践与科技竞赛特等奖(4次)、金奖(2次)、一等奖(10次),中国制冷空调行业大学生科技竞赛二等奖(2次)等。发表SCI论文100余篇(一作36篇,通讯32篇,12篇入选ESI高被引),SCI他引3000余次,H-indx=35(WoS),第一发明人获授权国家发明专利35项,多项获得转让。

教学课程

本科生课程:《传热学》、《制冷原理与设备》、《工程创新体验》、《大学生课外研学》

研究生课程:《高等传热学》、《高等传热传质学》


科研 教改项目

1、国家重点研发子课题,电力-蒸汽联产系统高精度仿真平台及优化设计,200万,2024-2027,主持。

2、江苏省发改委项目子任务,LNG冷能综合利用子系统,100万,2024-2027,主持。

3、国家自然科学基金面上项目,52476186基于纳米改性MgCO3/MgO颗粒的光-热-储-电一体化系统及其耦合机制2025-2028,48万,主持。

4、专利技术合同,8H03000029,2024/0830万元,主持。

5、江苏省碳达峰碳中和科技创新专项资金,BE2022028-4长时效太阳能储热技术研发2022-2026350万元,主持。

6、国家自然科学基金面上项目,52176061,超临界CO2纳米流体太阳能容积式集热与传热特性研究2022-202558万元,主持。

7、国家自然科学基金面上项目,51876040,混合纳米流体传热传质与光催化特性的耦合机制,2019-202258万元,主持。

8、国家自然科学基金青年基金,51506028,纳米氨水吸收式制冷系统与分散装置一体化研究,2016-201823.6万元,主持。

9、江苏省自然科学基金青年基金,BK20150607,纳米制冷剂在氨水吸收式制冷系统中的可持续应用研究,2015-201820万元、主持。

10、深圳市科技计划-基础研究自由探索项目,纳米流体全热回收式重污染空气快速净化系统研究,2019-202130万元,主持。

11、江苏省六大人才高峰高层次人才项目2019-2022,主持。

12、江苏省科协青年人才托举工程,2019主持。

13、东南大学学科振兴计划,2019主持。

14、教育部重点实验室开放基金,纳米流体太阳能相变储能与生物质能协同供暖研究,2015/06-2016/12主持。

15、专利技术转让(合同),85030012912017/1232万元,主持。

16、东南大学至善青年学者支持计划30万元,2018/01-2020/12,主持。

17、作为主要成员参与国家自然科学基金/科技部重点研发等项目10余项。

教改项目:

1.研究生学位课程《高等传热学》课程思政教学实践,2021,主持

2.东南大学“人工智能+教学”试点课程《制冷原理与设备》,2024,主持



论文 专著

1-   Zixiang Su, Liu Yang*, Hao Wang, Shenghui Liu, Jianzhong Song, Xing Jin, Solar-assisted combined cooling and power system integrating energy storage and desulfurization for coal-fired power plants, Thermal Science and Engineering Progress, 2023, 45: 102110.

2-   毛毛,卞成乐,蔡展豪,李宁军,马鑫,季伟凯,杨柳*, 载银二氧化钛纳米流体强化气液传热传质实验研究. 制冷学报, 2023, 44(02):113-119

3-   He Zhang, Xiaoke Li*, Size Zheng, Jin Wen, Jiaying Zhou, Rui Yang, Wenmei Luo, Liu Yang*, Xiaohu Wu.  The coralinspired steam evaporator for efficient solar desalination via porous and thermal insulation bionic design. SmartMat, (2023) e1175.

4-   Fengjiao Zhou, Liu Yang*, Lei Sun, Songyang Wang, Jianzhong Song, Xiaoke Li. The preparation, stability and heat-collection efficiency of solar nanofluids.  Journal of Thermal Analysis and Calorimetry,2023, 148(3): 591-622.

5-   Z Su, L Yang*, J Song, X Jin, X Wu, X Li. Sensitivity analysis and exergoeconomic optimization of an improved He-CO2 cascade Brayton cycle for concentrated solar power. Energy Conversion and Management 2023;279:116756

6-  Wang, S., Yang, L.*, Su, Z., Song, J., Liu, S., Li, X. Research progress on boiling heat transfer of nanofluids with emphasis on IVR-ERVC strategy. Thermal Science and Engineering Progress, 2023: 101716.

7-   Wang, Q., Yang, L.*, Song, J.. Preparation, thermal conductivity, and applications of nano–enhanced phase change materials (NEPCMs) in solar heat collection: A review. Journal of Energy Storage, 2023, 63, 107047.

8-   Li, X., Wang, H., Zhang, H., Yang, L.*. Comprehensive performance evaluation of Ti3C2 MXene/TiN composite nanofluids for photo thermal conversion. Applied Thermal Engineering, 2023, 228, 120486.

9-   Z Su, L Yang*, J Song, X Jin, X Wu, X Li. Multi-dimensional comparison and multi-objective optimization of geothermal-assisted Carnot battery for photovoltaic load shifting. Energy Conversion and Management 2023;289:117156.

10-  X Ma, L Yang*, J Song, W Jiang, X Li, X Wu. Investigation on the stability, thermal conductivity and viscosity of MXene/water nanofluids and development of ANN models. Powder Technology 2023:118686

11-  Qianrong Wang, Liu Yang*, Ning Zhao, Guoying Xu, Jianzhong Song, Xing Jin, Xiaoke Li, Shenghui Liu, A review of applications of plasmonic and conventional nanofluids in solar heat collection, Applied Thermal Engineering, 2022, 119476

12-  Avinash Alagumalai, Liu Yang*, Yulong Ding, Jeffrey S. Marshall, Mehrdad Mesgarpour, Somchai Wongwises, Mohammad Mehdi Rashidi, Robert A. Taylor, Omid Mahian*, Mikhail Sheremet, Lian-Ping Wang, Christos N. Markides*, Nano-engineered pathways for advanced thermal energy storage systems, Cell Reports Physical Science, Volume 3, Issue 8, 2022, 101007.

13-  Zixiang Su, Liu Yang*, Ning Zhao, Multi-criteria assessment of an environmentally-friendly scheme integrating solid oxide fuel cell hybrid power and renewable energy auxiliary supply, Journal of Cleaner Production, Volume 369, 2022, 133410.

14-  Zixiang Su, Liu Yang*, Peak shaving strategy for renewable hybrid system driven by solar and radiative cooling integrating carbon capture and sewage treatment, Renewable Energy, Volume 197, 2022, Pages 1115-1132.

15-  Z. Su, L. Yang*.A novel and efficient cogeneration system of waste heat recovery integrated carbon capture and dehumidification for coal-fired power plants,Energy Conversion and Management,255 (2022) 115358

16-  Zixiang Su, Liu Yang*, Energy management and life cycle assessment of efficient and flexible trigeneration system for coal-fired power plants, Applied Thermal Engineering, Volume 217, 2022, 119178

17-  Lei Sun, Liu Yang*, Ning Zhao, Jianzhong Song, Xiaoke Li, Xiaohu Wu, A review of multifunctional applications of nanofluids in solar energy, Powder Technology, Volume 411, 2022, 117932

18-  Xin Ma, Liu Yang*, Guoying Xu, Jianzhong Song, A comprehensive review of MXene-based nanofluids: Preparation, stability, physical properties, and applications, Journal of Molecular Liquids, Volume 365, 2022, 120037

19-  F Zhou, L. Yang*,An anisotropic thermal conductivity model for CNTs nanofluids by considering the discontinuity of nanotubes in thermal conduction path,International Communications in Heat and Mass Transfer,Volume 128,2021,105620

20-  J. Huang, L. Yang*, Y. Xie,Why the thermal conductivity of graphene nanofluids is extremely high? A new model based on anisotropy and particle-free renovation,Journal of Molecular Liquids,Volume 341,2021,117326

21-  Weikai Ji, Liu Yang*, Zihan Chen, Mao Mao, Jia-nan Huang,Experimental studies and ANN predictions on the thermal properties of TiO2-Ag hybrid nanofluids: Consideration of temperature, particle loading, ultrasonication and storage time,Powder Technology,388,2021, 212-232

22-  Avinash Alagumalai, Caiyan Qin, Vimal K E K, Evgeny Solomin, Liu Yang*, Ping Zhang*, Todd Otanicar, Alibakhsh Kasaeian, Ali J. Chamkha, Mohmammad Mehdi Rashidi, Somchai Wongwises, Ho Seon Ahn*, Zhao Lei, Tabassom Saboori, Omid Mahian*,Conceptual analysis framework development to understand barriers of nanofluid commercialization,Nano Energy,92 (2022) 106736

23-  L. Yang*, F.J. Zhou, W.K. Ji, M. Mao, J.N. Huang, X. Ma, An experimental study on the air refinement and heat recovery of hybrid TiO2-Ag nanofluids. Journal of Thermal Analysis and Calorimetry 147.21 (2022): 12047-12065.

24-  L. Yang*, F.J. Zhou, L. Sun, S.Y. Wang, Thermal management of lithium-ion batteries with nanofluids and nano-phase change materials: a review, Journal of Power Sources, 539 (2022) 231605.

25-  L. Yang*, Z. Su,An eco-friendly and efficient trigeneration system for dual-fuel marine engine considering heat storage and energy deployment,Energy,239(2022) 121930.

26-  L. Yang, X. Jin, Y. Zhang, K. Du, Recent development on heat transfer and various applications of phase-change materials, J. Clean. Prod. 218 (2021) 124432.

27-  L. Yang*, K. Du, Thermo-economic analysis of a novel parabolic trough solar collector equipped with preheating system and canopy, Energy, 211 (2020) 118900.

28-  L. Yang*J.N. Huang, F. Zhou, Thermophysical properties and applications of nano-enhanced PCMs: an update review, Energy Conversion and Management. 214 (2020) 211876 

29-  L. Yang*, W. Jiang, W. Ji, O. Mahian, et al. A review of heating/cooling processes using nanomaterials suspended in refrigerants and lubricants,International Journal of Heat and Mass Transfer, 2020,119611

30-  L. Yang*, W. Ji, M. Mao, J.N. Huang, An updated review on theproperties, fabrication and application of hybrid-nanofluids along with theirenvironmental effects. Journal of Cleaner Production, 257 (2020) 120408 

31-  L. Yang*, J.N. Huang, M. Mao, W. Ji. Numerical assessment of Ag-water nano-fluid flow in two new microchannel heatsinks: Thermal performance and thermodynamic considerations. International Communications in Heat and Mass Transfer, 110 (2020) 104415. 

32-  L. Yang*, K. Du, Numerical Simulation of Nanofluid Flow and Heat Transfer in a Microchannel: The Effect of Changing the Injection Layout Arrangement. International Journal of Mechanical Sciences, 172 (2020) 105415

33-  L. Yang*, K. Du, Z. Zhang, Heat transfer and flow optimization of a novel sinusoidal minitube filled with non-Newtonian SiC/EG-water nanofluids. International Journal of Mechanical Sciences,  168 (2020) 105310 

34-  L. Yang*, J.N. Huang, W. Ji, M. Mao, Investigations of a new combined application of nanofluids in heat recovery and air purification, Powder Technology, 360 (2020) 956-966. 

35-  L. Yang*, K. Du. A comprehensive review on the natural, forced and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. Journal of Thermal Analysis and Calorimetry,2020, 140: 2033-2054

36-  L. Yang*, W. Ji, M. Mao, J.N. Huang, Dynamic stability, sedimentation, and time-dependent heat transfer characteristics of TiO2 and CNT nanofluids, Journal of Thermal Analysis and Calorimetry,2020, 141: 1183-1195

37-  L. Yang*, W. Ji, Z. Zhang, X. Jin, Thermal conductivity enhancement of water by adding graphene Nano-sheets: Consideration of particle loading and temperature effects. International Communications in Heat and Mass Transfer, 109 (2019) 104353

38-  L. Yang*, W. Ji, J.N. Huang, G. Xu, An updated review on the influential parameters on thermal conductivity of nano-fluids. Journal of Molecular Liquids, 296 (2019) 111780. 

39-  L. Yang*, M. Mao, J.N. Huang, W. Ji, Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: An experimental study. Powder Technology, 356 (2019) 335-341.

40-  L. Yang*, W. Jiang, X. Chen, K. Du. (2017). Dynamic characteristics of an environment-friendly refrigerant: ammonia-water based TiO2 nanofluids. Int. J. Refrigeration, 82, 366-380.

41-  L. Yang*, X. Xu (2017). A renovated HamiltonCrosser model for the effective thermal conductivity of CNTs nanofluids. Int. Commun. Heat Mass Transfer, 81, 42-50 

42-  L. Yang*, X. Xu, W. Jiang, K. Du. (2017). A new thermal conductivity model for nanorod-based nanofluids. Appl. Therm. Eng.114, 287-299.

43-  L. Yang*, K. Du(2017). A comprehensive review on heat transfer characteristics of TiO2 nanofluids. Int. J.Heat Mass Transfer, 108, 11-31

44-  L. Yang*, Y. Hu. (2017). Toward TiO2 NanofluidsPart 1: Preparation and Properties. Nanoscale Res. Lett. 12(1), 417

45-  L. Yang*, Y. Hu. (2017). Toward TiO2 NanofluidsPart 2: Applications and Challenges. Nanoscale Res. Lett. 12(1), 446

46-  L. Yang*, Xu, J., K. Du, X. Zhang. (2017). Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technology, 317, 348-369

47-  L. Yang*, K. Du, X. Zhang. (2017). A theoretical investigation of thermal conductivity of nanofluids with particles in cylindrical shape by anisotropy analysis. Powder Technology, 314, 328-338

48-  L. Yang*, X. Chen, Xu Mengkai, K. Du. (2016). Roles of surfactants and particle shape in the enhanced thermal conductivity of TiO2 nanofluids. AIP Advances, 6(9), 095104

49-  L. Yang*, K. Du, X. Niu, Y. Zhang. (2014). Numerical Investigation of ammonia falling film absorption outside vertical tube with nanofluids. Int. J.Heat Mass Transfer. 79, 241-250

50-  L. Yang*, K. Du. An optimizing method for preparing natural refrigerant: ammonia-water nanofluids. Integrated Ferroelectrics, 2013, 147(1): 24-33

51-  L. Yang, K. Du, Y. Ding, Y. Li. Viscosity-prediction models of ammonia water nanofluids based on various dispersion types. Powder Technology, 2012, 215-216: 210-218

52-  L. Yang, K. Du, X. Zhang. Influence factors on the thermal conductivity of ammonia-water nanofluids. Journal of Central South University, 2012, 19(6):1622-1628

53-  L. Yang, K. Du. A thermal conductivity model for low concentrated nanofluids containing surfactants under various dispersion types. International Journal of Refrigeration, 2012, 35:1978-198

54-  L. Yang, K. Du, S. Bao, Y. Wu. Investigations of selection of nanofluid applied to the ammonia absorption refrigeration system. International Journal of Refrigeration, 2012, 35: 2248-2260

55-  L. Yang, K. Du, X. Niu, Y. Li, Y. Zhang. An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids. International Journal of Refrigeration, 2011, 34: 1741-1748

56-  L. Yang, K. Du, X. Niu, B. Cheng, Y. Jiang. Experimental study on enhancement of ammonia-water falling film absorption by adding nano-particles. International Journal of Refrigeration, 2011, 34: 640-647

57-  L. Yang, K. Du, X. Zhang, B. Cheng. Preparation and stability of Al2O3 nano-particle suspension of ammonia-water solution. Applied Thermal Engineering, 2011, 31:3643-3647

58-  杨柳, 杜垲, 李彦军, 程波氨水-Fe2O3纳米流体稳定性影响因素分析工程热物理学报, 201132(9), 1457-1460.

59-  杨柳, 杜垲, 张小松,牛晓峰. 铁酸锌-氨水纳米流体的制备及稳定性[J]. 东南大学学报, 2010, 26(2):368-371.

60-  L. Yang K. Du. Dispersion and thermal conductivity of Al2O3 and TiO2 binary nanofluids. Key engineering material, 2013, 531-532: 442-445 

61-  L. Yang, K. Du, Wu Yun Long, B. Bao. Role of interfacial surfactant layers in the thermal conductivity of nanofluids. Key engineering material, 2013, 531-532: 535-538

62-  L. Yang, K. Du. Investigations of surface tension of binary nanofluids. 2011 International Conference on Energy, Environment and Sustainable Development, Shanghai, China, 347-353:786-790 

63-  L. Yang K. Du. Effect of dispersion stability on thermal conductivity of binary nanofluids. The Internation Conference on Remote Sensing, Environment and Transportation, 2011, Nanjing, China, 4935–4938

64-  L. Yang, K. Du, B. Cheng, Y. Li. The effect of viscosity on the heat and mass transfer of NH3/H2O falling film absorption with Fe2O3 nanofluid. 2011 Asia-Pacific Power and Energy Engineering Conference, 2011, Wuhan, China, 5748435

65-  L. Yang K. Du, B. Cheng, Y. Jiang. The influence of Al2O3 nanofluid on the falling film absorption with ammonia-water. 2010 Asia-Pacific Power and Energy Engineering Conference, 2010, Chengdu, China, 5449136

66-  Z Su, L Yang*, H Wang, J Song, W Jiang, Exergoenvironmental optimization and thermoeconomic assessment of an innovative multistage Brayton cycle with dual expansion and cooling for ultra-high temperature solar power, Energy, 286 (2024) 129581

67-  Z Su, L Yang*, N Zhao, J Song, X Li, X Wu, Steady Flow Properties and Spectral Absorption Potential of Supercritical Carbon Dioxide Nanofluids: Experimental Comparison and Machine Learning Optimization, Powder Technology,434 (2024)119315

68-  Z Su, L Yang*, N Zhao, Experimental and neural network prediction of the cyclic stability and light absorption characteristics of supercritical CO2 based CNTs nanofluids, Applied Thermal Engineering, 241(2024) 122347

69- W Xie, X Li*, J Zhou, F Yin*, Y Jiang, L Yang*, The PPy-coated halloysite nanotubes nanofluids with high stability and broad-spectrum absorption for effective photothermal conversion, Solar Energy Materials and Solar Cells, 266 (2024)112694

70- G Su, L Yang*, S Liu, J Song, We Jiang, X Jin, Review on factors affecting nanofluids surface tension and mechanism analysis, Journal of Molecular Liquids, 407 (2024) 125159

71-W Liu, S Zhang, L Yang*, B Li*, Phase change thermal storage composite synthesized by impregnating steel-slag-derived porous ceramics with the molten solar salts, Journal of Energy Storage 94 (2024) 112426

72- Lin-xu Jiao, Chun Zhu, Shi-guang Zhang, Wen-han Li, Liu Yang*, Yun-yi Wu*, Bao-rang Li*, High temperature corrosion behavior and mechanism of steel slag-based glass ceramic in the eutectic carbonates, Ceramics International, 2024 (50) 39951-39964

73-Z Su; L Yang*, Song; X Jin; X Li, Emergoenvironmental Analysis and Sustainable Flexible Peaking of a Novel Solar-Assisted Solid Oxide Fuel Cell Cogeneration System, Journal of Power Sources, 2024 (617) 235149

74-Z Su; L Yang*; H Wang; J Song; We Jiang; S Liu; C Liang, 6E Analysis and Particle Swarm Optimization of a Novel Ultra-High Temperature Solar Cogeneration System Fusing Thermochemical Energy Storage and Multistage Direct Heat Transfer, Energy Conversion and Management, 2024 (317) 118867

75- H Zhong, L Yang *, J Song, X Wu, X Li, Recent Progress in Nanofluid Specific Heat Capacity: A Comprehensive Review, Journal of Thermal Science, 2024, in press

76- Liu Yang*, Jialu Tian, Yulong Ding, Avinash Alagumalai, Fatih Selimefendigil, Mortaza Aghbashlo, Meisam Tabatabaei, L. Godson Asirvatham, Somchai Wongwises, S.A. Sherif, Efstathios E. Michaelides, Christos N. Markides, Omid Mahian*, The Physics of Phase Transition Phenomena Enhanced by Nanoparticles, Applied Physics Reviews, 2024, in press

77-H Zhong, L Yang *, J Song, X Li, X Wu, Investigation of Thermal Properties of TiN/MWCNT-OH Hybrid Nanofluids and GWO-BP Neural Network Model, Powder Technology, 449 (2025) 120390

78-Z Su, N Zhao, X Li, J Liu, L Yang *, Experimental and numerical investigation on heat transfer mechanism and multifunctional thermodynamic properties of supercritical carbon dioxide/amino-functionalized graphene nanofluids, International Journal of Heat and Mass Transfer, 2025, 126702

专利申请

[1]苏子翔,邱烁琳,温舒馨,卞成乐,凌丹,孙佩瑶,杨柳.一种太阳能光热与辐射制冷一体化装置.ZL202210156728.8,2024-4-26(学生排1

[2]周凤娇,杨柳.一种一体化全热回收式新风窗户.ZL202111134550.9,2022-09-20(学生排1

[3]孙蕾,杨柳.一种基于纳米流体的一体化多功能窗户.ZL202110974259.6,2022-09-23(学生排1

[4]季伟凯,杨柳,周凤娇,王嵩阳,孙蕾.一种基于纳米流体的水下隐形景观灯.ZL202011047567.6,2022-04-29(学生排1

[5]杨柳,赵润玉,张子茜,熊再立,李婧怡,孙汤庆一,林清宾.一种兼具消毒和新风净化功能的水产养殖箱.ZL202010606579.1,2021-11-05

[6]杨柳,黄嘉楠,毛毛,季伟凯,李佩蔚,肖晋飞.一种基于纳米流体的全热回收式新风净化系统. ZL201910975891.5,2021-12-07

[7] 杨柳, 李梦欣, 樊聪慧.一种全自动双水温开水器. ZL201710497773.9, 2019-10-11

[8] 杨柳, 马昕宇.一种光伏光热一体化装置. ZL201710497774.3, 2019-04-30

[9] 杨柳, 结兄, 许健勇.一种采用导流丝的气体精馏装置. ZL2016108140235, 2018-08-28

[10] 杨柳, 结兄, 徐新懿, 袁天鹏.一种自动隔冷浴帘. ZL201610396032.7, 2018-06-01

[11] 杨柳, 杜垲. 一种壁挂式空调新风装置. ZL201410532351.7, 2016-08-17

[12] 杨柳, 金星, 杜垲, 殷勇高, 张小松. 一种太阳能相变储能暖箱. ZL201410212275.1,2016-6-29

[13] 杨柳, 杜垲, 张小松. 重力不平衡式方形壳立管式刮液冷凝器. ZL201410218550.0,2016-05-11

[14] 杨柳, 张小松, 杜垲. 一种立式蒸发管内液膜分布器.ZL201410206783.9, 2016-05-11

[15] 杨柳, 张小松, 杜垲. 用于水冷式垂直冷凝管外的除液装置. ZL201410206099.0,2016-04-06

[16] 杨柳, 张小松, 殷勇高, 杜垲. 具备自动除液功能的板式冷凝器. 201410206790.9,2016-4-6

[17] 杨柳, 杜垲, 张小松.一种采用Ω形弹簧的管壳卧式液膜翻转降膜吸收装置.ZL201410227740.9, 2016-04-06

[18] 杨柳, 杜垲,张小松. 基于TiO2纳米流体的喷雾式PM2.5 净化装置. ZL201410212274.7,2016-03-16

[19] 杨柳, 陈谢磊, 杜垲, 金星.一种管壳立式防结垢降膜吸收装置. ZL201410211869.0, 2016-03-16

[20] 杨柳, 陈谢磊, 杜垲, 张小松. 一种无动力太阳能相变蓄能床垫. ZL201410211260.3,2016-2-10

[21] 杨柳, 杜垲. 一种自动清理管外烟垢的管内再布膜发生装置. ZL201410217465.2, 2016-2-24

[22] 杨柳, 杜垲, 鲁洁明, 刘腾, 陈谢磊, 张小松. 一种强化传热重力热管.ZL201410470178.2, 2016-02-24

[23] 杨柳, 张小松, 李舒宏, 殷勇高. 基于虹吸原理的管壳卧式刮液冷凝器.ZL201410207074.2, 2016-1-27

[24] 杨柳, 鄂文汲, 胡会涛, 陈谢磊, 杜垲, 张小松.一种强制对流热管. ZL201410487681.9, 2016-01-20

[25] 杨柳, 杜垲. 一种双向自扰动板式降膜吸收装置. ZL201410217463.3, 2016-01-13

[26] 杨柳, 杜垲. 一种利用烟气余热的自动除灰板式降膜发生装置. ZL201410211868.6,2016-3-23

[27] 杨柳, 杜垲. 带有滚动式液体飞溅器的方形卧式气体冷凝装置. ZL201410331083.2,2015-9-30

[28] 杨柳, 陈谢磊等. 基于碳黑纳米流体的空气细颗粒净化装置及流体制备方法. ZL201410211867.1, 2015-7-8

[29] 杨柳, 杜垲, 武云龙, 鲍帅阳. 一种纳米流体氨水吸收式制冷循环装置. ZL201310253533.6, 2015-4-15

[30] 杨柳, 杜垲, 徐国英, 李彦军. 一种制备纳米流体的方法. ZL201310107008.3, 2015-3-18

[31] 杨柳, 杜垲. 纳米流体自分散装置及溴化锂吸收式制冷循环系统. ZL201310253531.7, 2015-3-18

[32] 杨柳, 杨婧文, 杜垲. 用于氨水吸收式制冷系统的纳米流体. ZL201310053589.7.2015-3-18

[33] 杨柳, 杜垲. 一种氮化钛氨水纳米流体及其制备方法. ZL201310054625.1, 2014-12-31

[34] 杨柳, 杨婧文, 杜垲, 张忠斌. 一种自分散纳米流体热管. ZL201310256722.9, 2014-12-10

[35] 杨柳, 杜垲. 一种基于比吸光度的纳米流体的制备方法. ZL201310053959.7, 2014-12-10

[36] 杨柳, 杜垲. 一种用于制备纳米流体的离心装置及制备纳米流体的方法. ZL201310106427.5, 2014-07-09

[37] 杨柳, 杜垲.利用音频控制开合的开水器节水开关及其方法. ZL201110457131.9, 2014-07-02

[38] 杨柳, 杜垲. 使用带槽筛板的纳米流体动态稳定性测试装置. ZL201110269379.2, 2013-4-24

[39] 杨柳,毛毛,黄嘉楠.一种基于S-CO2纳米流体的太阳能集热布雷顿动力循环. ZL202210498186.2, 2024-11-12

荣誉 奖励

2015  东南大学优秀博士学位论文

2017  东南大学授课竞赛三等奖、“能源与环境学院最受欢迎老师”称号

2018  东南大学至善青年学者、江苏省本科生优秀毕业设计论文一等奖(指导教师)

2018  全国大学生节能减排竞赛三等奖(指导教师)、中国大学生制冷空调行业科技竞赛二等奖(指导教师)

2018  江苏省制冷协会创新创业大赛一等奖、省科协双创大赛三等奖、江苏省制冷会优秀论文二等奖

2016-2018  Elsevier旗下7本SCI杂志Outstanding reviewer

2019 江苏省六大人才高峰高层次人才、江苏省科协青年托举工程、江苏省制冷学会优秀论文一等奖

2020  东南大学授课竞赛三等奖全国大学生节能减排竞赛一等奖(指导教师)

2021 东南大学优秀本科毕业设计(指导教师)、能源动力类专业百篇优秀本科毕业设计论文(指导教师)

2021 全国青年科普创新实验暨作品大赛(江苏赛区)二等奖(指导教师)江苏省大学生节能减排大赛一等奖、特等奖(指导教师)

2021 闵瑜奖教金、东南大学教学成果一等奖(9/11)、江苏省教学成果二等奖(9/11)、

2021 全国大学生节能减排社会实践与科技竞赛特等奖(指导教师)

2022 全国大学生制冷空调行业科技竞赛二等奖(指导教师)、江苏省大学生节能减排大赛特等奖(指导教师)

2022 全国大学生节能减排社会实践与科技竞赛特等奖(指导教师:张会岩、杨柳)、一等奖(指导教师)

2022 中国能源研究会优秀青年能源科技工作者

2023 能源与环境学院本科生培养先进个人、吾爱吾师“全校最受欢迎老师”称号

2023 东南大学优秀硕士毕业论文(指导教师)

2023 全国大学生节能减排社会实践与科技竞赛特等奖(指导教师:肖睿、杨柳)、一等奖(指导教师)

2023 东南大学杰出教学奖——教学新秀奖

2018-2023 连续4次入选全球前2%顶尖科学家“年度影响力”榜单(斯坦福大学发布)

2024 东南大学优秀本科毕业设计(指导教师)

2024 江苏省大学生节能减排大赛特等奖(指导教师)全国大学生节能减排社会实践与科技竞赛特等奖(指导教师)

2024 第三届中国研究生“双碳”创新与创意大赛三等奖(指导教师),中国制冷空调行业大学生科技竞赛二等奖(指导教师)

指导学生

20、冯启豪、硕士生(2024)

19、王烨凡、硕士生(2024)

18、张明玥、硕士生(2024)

17、林明、博士生(2024)

16、王浩、博士生(2023春)

15、卞成乐、硕士生(2023)

14、田佳鹭,硕士生(2023)

13、赵宁、博士生(2022春)

12、钟红、硕士生(2022)(研究生国家奖学金)

11、苏贵福,硕士生(2022)(研究生国家奖学金)

10、苏子翔、博士生(2021)(博士生新生奖学金)(江苏省研究生创新项目)(研究生国家奖学金2次)(博士生创新能力提升计划)

9、马鑫、MXene 纳米流体的物性及容积式集热特性研究》,硕士生,2021-2024(研究生国家奖学金)(出国读博,全奖)

8、王芊蓉,硕士生,2021-2024超临界CO2-等离激元复合纳米流体的制备及分散(研究生国家奖学金)(优秀毕业生)(入职南理工)

7、周凤娇、《超临界CO2纳米流体的导热性能与稳定性研究,硕士生,2020-2023(研究生国家奖学金)(至善奋斗奖)(选调生)

6、王嵩阳、《基于ERVC策略的纳米流体临界热流特性及影响机理研究》,硕士生,2020-2023(远景科创,上海)

5、孙蕾、《纳米流体采光与集热的耦合 与调控性能研究》,硕士生,2020-2023(科远奖学金)(优秀毕业生)(事业编)

4、毛毛、《载银二氧化钛纳米流体强化气液传热传质特性研究》,硕士生,2019-2022(远景能源,北京)

3、黄嘉楠、《纳米粒子的形态对纳米复合材料导热系数的影响机理研究》硕士生,2019-2022(研究生国家奖学金)(东南大学优秀硕士学位论文)(江苏省研究生创新项目)(美的空调)

2、季伟凯、《载银二氧化钛纳米流体全热回收与空气净化特性研究》、硕士生,2018-2021(科远奖学金)(选调生)

1、陈谢磊、TiO2-氨水纳米流体动态稳定性、物性及对流换热特性研究》,硕士生,2014-2016(英集能源)

欢迎对太阳能利用、储能、传热传质、制冷空调等方向感兴趣的同学报考研究生,共谋发展!